We show that if a compact hypersurface $M$ , $n > 2$ of the Euclidean space, admits a non zero Killing vector field $X$ of constant length then $n$ is odd and $M$ is diffeomorphic to the unit hypersphere of $R^{n+1}$. Actually, we show that $M$ is a complex ellipsoid in $C^N = R^{n+1}$. As an application we give a simpler proof of a recent theorem due to S. Deshmukh.
Killing vector fields of constant length on compact hypersurfaces / DI SCALA, ANTONIO JOSE'. - In: GEOMETRIAE DEDICATA. - ISSN 0046-5755. - STAMPA. - 175:1(2015), pp. 403-406. [10.1007/s10711-014-9954-6]
Killing vector fields of constant length on compact hypersurfaces
DI SCALA, ANTONIO JOSE'
2015
Abstract
We show that if a compact hypersurface $M$ , $n > 2$ of the Euclidean space, admits a non zero Killing vector field $X$ of constant length then $n$ is odd and $M$ is diffeomorphic to the unit hypersphere of $R^{n+1}$. Actually, we show that $M$ is a complex ellipsoid in $C^N = R^{n+1}$. As an application we give a simpler proof of a recent theorem due to S. Deshmukh.File | Dimensione | Formato | |
---|---|---|---|
N52Porto.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
256.95 kB
Formato
Adobe PDF
|
256.95 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2535724
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo