Protein comparison is gaining importance year after year since it has been demonstrated that biologists can find cor- relation between different species, or genetic mutations that can lead to cancer and genetic diseases. Protein sequence alignment is the most computational intensive task when performing protein comparison. In order to speed-up alignment, dedicated processors that can perform different computations in parallel have been designed. Among them, the best performance have been achieved using Systolic Arrays. However, when the Processing Elements of the Systolic Array have an internal loop, performance could be highly reduced. In this work we present an architectural strategy to address this problem applying pipeline interleaving; this strategy is applied to a Systolic Array for Smith Waterman algorithm that we designed. Results encourage the adoption of pipeline interleaving for parallel circuits with loop based Processing Elements. We demonstrate that important benefits in terms of higher operating frequency can be derived without so relevant costs as increased complexity, area and power required.

Protein Alignment Systolic Array Throughput Optimization / Causapruno, Giovanni; Urgese, Gianvito; Vacca, Marco; Graziano, Mariagrazia; Zamboni, Maurizio. - In: IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS. - ISSN 1063-8210. - STAMPA. - 23:1(2015), pp. 68-77. [10.1109/TVLSI.2014.2302015]

Protein Alignment Systolic Array Throughput Optimization

CAUSAPRUNO, GIOVANNI;URGESE, GIANVITO;VACCA, MARCO;GRAZIANO, MARIAGRAZIA;ZAMBONI, Maurizio
2015

Abstract

Protein comparison is gaining importance year after year since it has been demonstrated that biologists can find cor- relation between different species, or genetic mutations that can lead to cancer and genetic diseases. Protein sequence alignment is the most computational intensive task when performing protein comparison. In order to speed-up alignment, dedicated processors that can perform different computations in parallel have been designed. Among them, the best performance have been achieved using Systolic Arrays. However, when the Processing Elements of the Systolic Array have an internal loop, performance could be highly reduced. In this work we present an architectural strategy to address this problem applying pipeline interleaving; this strategy is applied to a Systolic Array for Smith Waterman algorithm that we designed. Results encourage the adoption of pipeline interleaving for parallel circuits with loop based Processing Elements. We demonstrate that important benefits in terms of higher operating frequency can be derived without so relevant costs as increased complexity, area and power required.
File in questo prodotto:
File Dimensione Formato  
TVLSI-protein-alignement.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.37 MB
Formato Adobe PDF
1.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
TVLSI-protein-alignement.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2527488
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo