By considering the kernels of the first two traces, four different second order Sobolev spaces may be constructed. For these spaces, embeddings into Lebesgue spaces, the best embedding constant and the possible existence of minimizers are studied. The Euler equation corresponding to some of these minimization problems is a semilinear biharmonic equation with boundary conditions involving third order derivatives: it is shown that the complementing condition is satisfied.

Best constants and minimizers for embeddings of second order Sobolev spaces / Berchio, Elvise; F., Gazzola. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - STAMPA. - 328:(2006), pp. 718-735. [10.1016/j.jmaa.2005.07.052]

Best constants and minimizers for embeddings of second order Sobolev spaces

BERCHIO, ELVISE;
2006

Abstract

By considering the kernels of the first two traces, four different second order Sobolev spaces may be constructed. For these spaces, embeddings into Lebesgue spaces, the best embedding constant and the possible existence of minimizers are studied. The Euler equation corresponding to some of these minimization problems is a semilinear biharmonic equation with boundary conditions involving third order derivatives: it is shown that the complementing condition is satisfied.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2522495
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo