We show that, under so called controllable growth conditions, any weak solution in the energy class of the semilinear parabolic system $u_t (t, x) + Au(t, x) = f (t,x,u, . . . ,∇^m u), (t, x)\in (0, T ) \times \Omega$, is locally regular. Here, A is an elliptic matrix differential operator of order 2m. The result is proved by writing the system as a system with linear growth in $u, . . . ,∇^m u$ but with “bad” coefficients and by means of a continuity method, where the time serves as parameter of continuity. We also give a partial generalization of previous work of the second author and von Wahl to Navier boundary conditions.

Local regularity of weak solutions of semilinear parabolic systems with critical growth / Berchio, Elvise; H. C., Grunau. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - STAMPA. - 7:(2007), pp. 177-196. [10.1007/s00028-007-9998-2]

Local regularity of weak solutions of semilinear parabolic systems with critical growth

BERCHIO, ELVISE;
2007

Abstract

We show that, under so called controllable growth conditions, any weak solution in the energy class of the semilinear parabolic system $u_t (t, x) + Au(t, x) = f (t,x,u, . . . ,∇^m u), (t, x)\in (0, T ) \times \Omega$, is locally regular. Here, A is an elliptic matrix differential operator of order 2m. The result is proved by writing the system as a system with linear growth in $u, . . . ,∇^m u$ but with “bad” coefficients and by means of a continuity method, where the time serves as parameter of continuity. We also give a partial generalization of previous work of the second author and von Wahl to Navier boundary conditions.
File in questo prodotto:
File Dimensione Formato  
grunauUFFICIALE.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 164.33 kB
Formato Adobe PDF
164.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2522488
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo