The study of the corrosion mechanisms which affect iron artifacts is the first fundamental step for developing tailored and long-lasting conservation procedures. Unfortunately, such mechanisms are connected not only to the composition of the corrosion product layer, but also to its porosity and micro-structure. μ-Raman spectroscopy can be used to assess the composition of the corrosion products, but the effect of the layer porosity requires a different approach. This paper investigates the combined use of μ-Raman and Electrochemical Impedance Spectroscopy (EIS) for the characterization of some iron reinforcements of the Metz Cathedral (France), with the final goals of understanding the corrosion mechanism and having a reliable assessment of the artifact stability. In particular, the proposed measuring approach has proved to be able to give useful data on the electrochemical reactivity of the surface, on the presence of cracks and on the porosity degree of the corrosion product layers. After a series of laboratory tests to characterize the surface, the EIS measurements can be employed also in-situ for a noninvasive assessment of the artifact corrosion behavior. This way it is possible to conceive long-lasting monitoring campaigns, which would allow one to identify artifacts apparently well-preserved, but in danger of possible corrosion due to the porous nature of their corrosion layers and the presence of active electrochemical species in contact to the metallic surface.

Integrated measuring approach for the study of corrosion mechanisms / Grassini, Sabrina; Parvis, Marco; Marie, Bouchar; Philippe, Dillmann; Delphine, Neff. - ELETTRONICO. - (2013), pp. 990-995. (Intervento presentato al convegno 2013 IEEE International Instrumentation and Measurement Technology Conference tenutosi a Minneapolis, MN, USA nel May 6-9 2013) [10.1109/I2MTC.2013.6555564].

Integrated measuring approach for the study of corrosion mechanisms

GRASSINI, Sabrina;PARVIS, Marco;
2013

Abstract

The study of the corrosion mechanisms which affect iron artifacts is the first fundamental step for developing tailored and long-lasting conservation procedures. Unfortunately, such mechanisms are connected not only to the composition of the corrosion product layer, but also to its porosity and micro-structure. μ-Raman spectroscopy can be used to assess the composition of the corrosion products, but the effect of the layer porosity requires a different approach. This paper investigates the combined use of μ-Raman and Electrochemical Impedance Spectroscopy (EIS) for the characterization of some iron reinforcements of the Metz Cathedral (France), with the final goals of understanding the corrosion mechanism and having a reliable assessment of the artifact stability. In particular, the proposed measuring approach has proved to be able to give useful data on the electrochemical reactivity of the surface, on the presence of cracks and on the porosity degree of the corrosion product layers. After a series of laboratory tests to characterize the surface, the EIS measurements can be employed also in-situ for a noninvasive assessment of the artifact corrosion behavior. This way it is possible to conceive long-lasting monitoring campaigns, which would allow one to identify artifacts apparently well-preserved, but in danger of possible corrosion due to the porous nature of their corrosion layers and the presence of active electrochemical species in contact to the metallic surface.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2518661
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo