Tunnel excavation is a three-dimensional (3D) problem. However, despite recent advances in computing resources, 3D models are still computationally inefficient and two-dimensional (2D) simulations are therefore often used. Modelling the tunnelling process in a 2D plane strain analysis requires a specific approach that allows a 3D tunnelling effect to be taken into consideration. As far as the urban tunnels are concerned, most cases reported in the literature have focused on estimating the applicability of these equivalent approaches that are based on the evaluation of the settlement that develops on the ground surface, without considering the influence of segment joints. The main objective of this study was to provide a 2D numerical investigation to highlight the influence of two equivalent approaches, that is, the convergence-confinement method (CCM) and the volume loss method (VLM), on the behaviour of a tunnel built in an urban area, in terms of not only the surface settlement but also the structural lining forces, taking into account the effect of segment joints. A technique that can be used to simulate the tunnel wall displacement process, based on the principles of the VLM, has been developed using the FLAC3D finite difference program (Itasca in FLAC fast Lagrangian analysis of continua, version 4.0; User’s manual, http. itascacg.com, 2009). A comparison with 3D numerical results has been introduced to estimate the precision of these 2D equivalent approaches. The results have shown a significant influence of the tunnel boundary deconfinement technique and segment joints on the tunnel lining behaviour and surface settlements. The structural forces obtained by means of the CCM are often smaller than those determined with the VLM for the same surface settlement. Generally, the structural lining forces determined by the CCM are in better agreement with the 3D numerical results than the ones obtained with the VLM. However, in order to obtain an accurate estimation of the structural forces, the impact of the construction loads during tunnelling should be taken into account.
2D Tunnel Numerical Investigation: The Influence of the Simplified Excavation Method on Tunnel Behaviour / Do, N. A.; Dias, D.; Oreste, Pierpaolo; Djeran Maigre, I.. - In: GEOTECHNICAL AND GEOLOGICAL ENGINEERING. - ISSN 0960-3182. - ELETTRONICO. - (2013), pp. 1-16. [10.1007/s10706-013-9690-y]
2D Tunnel Numerical Investigation: The Influence of the Simplified Excavation Method on Tunnel Behaviour
ORESTE, PIERPAOLO;
2013
Abstract
Tunnel excavation is a three-dimensional (3D) problem. However, despite recent advances in computing resources, 3D models are still computationally inefficient and two-dimensional (2D) simulations are therefore often used. Modelling the tunnelling process in a 2D plane strain analysis requires a specific approach that allows a 3D tunnelling effect to be taken into consideration. As far as the urban tunnels are concerned, most cases reported in the literature have focused on estimating the applicability of these equivalent approaches that are based on the evaluation of the settlement that develops on the ground surface, without considering the influence of segment joints. The main objective of this study was to provide a 2D numerical investigation to highlight the influence of two equivalent approaches, that is, the convergence-confinement method (CCM) and the volume loss method (VLM), on the behaviour of a tunnel built in an urban area, in terms of not only the surface settlement but also the structural lining forces, taking into account the effect of segment joints. A technique that can be used to simulate the tunnel wall displacement process, based on the principles of the VLM, has been developed using the FLAC3D finite difference program (Itasca in FLAC fast Lagrangian analysis of continua, version 4.0; User’s manual, http. itascacg.com, 2009). A comparison with 3D numerical results has been introduced to estimate the precision of these 2D equivalent approaches. The results have shown a significant influence of the tunnel boundary deconfinement technique and segment joints on the tunnel lining behaviour and surface settlements. The structural forces obtained by means of the CCM are often smaller than those determined with the VLM for the same surface settlement. Generally, the structural lining forces determined by the CCM are in better agreement with the 3D numerical results than the ones obtained with the VLM. However, in order to obtain an accurate estimation of the structural forces, the impact of the construction loads during tunnelling should be taken into account.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2517729
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo