In this paper we analyze and characterize the saturated fractions of two-factor designs under the simple effect model. Using Li et al.ear algebra, we define a criterion to check whether a given fraction is saturated or not. We also compute the number of saturated fractions, providing an alternative proof of the Cayley's formula. Finally we show how, given a list of saturated fractions, Gini indexes of their margins and the associated state polytopes could be used to classify them.
Two factor saturated designs: cycles, Gini index and state polytopes / Fontana, Roberto; Rapallo, F.; Rogantin, M. P.. - In: JOURNAL OF STATISTICAL THEORY AND PRACTICE. - ISSN 1559-8608. - 8:1(2014), pp. 66-82. [10.1080/15598608.2014.840518]
Two factor saturated designs: cycles, Gini index and state polytopes
FONTANA, ROBERTO;
2014
Abstract
In this paper we analyze and characterize the saturated fractions of two-factor designs under the simple effect model. Using Li et al.ear algebra, we define a criterion to check whether a given fraction is saturated or not. We also compute the number of saturated fractions, providing an alternative proof of the Cayley's formula. Finally we show how, given a list of saturated fractions, Gini indexes of their margins and the associated state polytopes could be used to classify them.File | Dimensione | Formato | |
---|---|---|---|
Author_Version_jstp2013.pdf
accesso aperto
Descrizione: processato borsista DISMA
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
527.18 kB
Formato
Adobe PDF
|
527.18 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2515915
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo