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Abstract 

In this paper we analyze and characterize the saturated fractions of two-factor designs under the 

simple effect model. Using Li et al.ear algebra, we define a criterion to check whether a given 

fraction is saturated or not. We also compute the number of saturated fractions, providing an 

alternative proof of the Cayley's formula. Finally we show how, given a list of saturated 

fractions, Gini indexes of their margins and the associated state polytopes could be used to 

classify them. 

AMS Subject Classification: 62K15, 15B34, 05B20, 62H17 

Key words: Estimability, Gini index, State polytope, Universal Markov basis. 

1  Introduction 

The study of estimable designs is an investigated problem in Design of experiments. Given a 

model, saturated fractions are subsets of the factorial design with as many points as the number 
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of the model parameters and such that all the parameters are estimable, i.e., the corresponding 

model matrix is full rank. The books Raktoe et al. (1981) Raktoe, Hedayat, and Federer and 

Bailey (2008) are general references for the theory of Design of experiments where the issue of 

saturated fractions is discussed. 

In this paper, we present a new approach to lay the foundations for studying the fractions with 

the minimal number of points. As a first step in this direction, we analyze and characterize the 

saturated fractions of two-factor designs under the simple effect model. We point out that this 

theory allows also the generation of saturated fractions of multi-factor designs, as shown in 

Remark 1. The characterization of saturated fractions is a relevant question, as a randomly 

chosen minimal set of design points yields a singular model matrix with very high probability 

when the number of the factor levels becomes large, even under the simple effect model. 

Moreover, we study two methodologies that can support the classification of a list of saturated 

fractions. The first one makes use of the Gini index, see Gini (1912) , while the second one is 

based on state polytopes, see Sturmfels (1996) . 

In order to characterize saturated fractions, our approach is based on two main ingredients. First, 

we apply tools from Li et al.ear algebra and Combinatorics to characterize the saturated 

fractions. Some notions, and in particular the definition of k-cycle used in Section 2, has already 

been considered in the framework of contingency tables in Kuhnt et al. (2013) Kuhnt, Rapallo, 

and Rehage for the definition of robust procedures for outliers detection in contingency tables. 

Second, we identify a factorial design with a contingency table whose entries are the indicator 

function of the fraction, i.e., they are equal to 1 for the fraction points and 0 otherwise. This 
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implies that a fraction can also be considered as a subset of cells of the table. In Design of 

experiments, the application of techniques from contingency table analysis has been introduced 

in Fontana et al. (2012) Fontana, Rapallo, and Rogantin for special designs coming from Sudoku 

problems. Moreover, in Aoki and Takemura (2010) and Aoki and Takemura (2012) such 

techniques are used for experiments with discrete response variable. 

With respect to other approaches to the problem of describing saturated fractions, see e.g. Krafft 

and Schaefer (1997) and Dey et al. (1995) Dey, Shah, and Das, the techniques used here are 

mainly based on the notion of Markov bases and were originally developed for contingency 

tables in the field of Algebraic Statistics. As a general definition, Algebraic Statistics concern the 

application of polynomial algebra techniques to Statistics. This theory was first presented in 

Fontana et al. et al. (2001) Fontana et al., Riccomagno, and Wynn, and a recent account can be 

found in Drton et al. (2009) Drton, Sturmfels, and Sullivant. In the present paper, we show that 

the k-cycles defines a special Markov basis, named Universal Markov basis, introduced in 

Rapallo and Rogantin (2007) . This new approach has also interesting extensions to multi-factor 

designs, see Fontana et al. (2013) Fontana, Rapallo, and Rogantin, but in the two factor setting 

we are able to provide simpler proofs and to explicitly describe the saturated fractions. This issue 

leads us to a complete analysis of the saturated fractions with respect to several criteria. 

We also develop a methodology to classify a given set of saturated designs. It is based on the 

computation of the Gini indexes of the univariate margins of each fraction. Then, for polynomial 

models, we show how the state polytope of each fraction could be used to compare different 

saturated fractions from a graphical point of view. 
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In this work we adopt different perspectives to analyze two-factor saturated designs. In the first 

part we focus on their algebraic characterization, including counting issues, while in the second 

part we study some methodologies for their classification. The paper is organized as follows. In 

Section 2 we set some notations, we state the problem, we define the k-cycles in a fraction and 

we characterize them in terms of orthogonal arrays. In Section 3 we prove the main result, 

showing that the absence of a k-cycle is a necessary and sufficient condition for obtaining a 

saturated fraction, while in Section 4, we enumerate the saturated fractions showing that their 

proportion over the whole number of fractions tends to zero as the number of levels increases. 

Section 5 is devoted to the classification of saturated fractions using several criteria, such as the 

word-length pattern, the Gini index and the state polytope. 

2  Saturated designs and cycles 

2.1  Notations and basic definitions 

Let D  be a full factorial design with 2 factors, A and B, with I and J levels, respectively 

( , 2I J ≥ ),D = [ ] [ ] = {1, , } {1, , }I J I J× ×… … . We consider a Linear model on D : 

 , , ,= [ ], [ ],i j i j i jY for i I j Jμ ε+ ∈ ∈  

where ,i jY  are random variables with means ,i jμ  and ,i jε  are centered random variables that 

represent the error terms. In this paper we always consider the simple effect model, i.e.: 

 , ,( ) = = [ ], [ ],i j i j i jY for i I j Jμ μ α β+ + ∈ ∈E   (2.1) 
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where μ  is the mean parameter, and iα  and jβ  are the main effects of A and B, respectively. 

We denote by p the number of estimable parameters. Therefore, = 1p I J+ −  for the model of 

Equation (2.1). Under a suitable parametrization, the matrix of this model is a full-rank matrix 

with dimensions ( 1)IJ I J× + − . In this paper we will use the following model matrix: 

 ( )0 1 1 1 1= | | | | | | ,I JX m a a b b− −… …   (2.2) 

where 0m  is a column vector of 1's, 1 1, , Ia a −…  are the indicator vectors of the first ( 1)I −  levels 

of the factor A, and 1 1, , Jb b −…  are the indicator vectors of the first ( 1)J −  levels of the factor B. 

It is known that this matrix corresponds to the following reparametrized model: 

 , = , [ ], [ ]; = , = , = .i j i j I J i i I j j Jfor i I j Jμ μ α β μ μ α β α α α β β β+ + ∈ ∈ + + − −� �� �� �  

A subset F  , or fraction, of a full design D , with minimal cardinality # = pF , that allows us to 

estimate the model parameters, is a main-effect saturated design. By definition, the model matrix 

XF  of a saturated design is non-singular. 

Example 1. Let us consider the case = 3I , = 4J  and the fraction 

 { }= (1,1), (1, 2), (2, 2), (2,3), (3,3), (3, 4) .F  

The model matrix X of the full design and the model matrix XF  of the fraction are given in 

Figure 1. Is this case, det( ) = 1XF . 
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Remark 1. Notice that the design matrix XF  in Example 1 has an immediate generalization to 

multi-factor designs. In fact, it is easy to see that XF  is the design matrix of the following 

saturated fraction of a 52  design under the simple effect model, where the fraction is: 

 { }(1, 2,1, 2, 2), (1, 2, 2,1, 2), (2,1, 2,1, 2), (2,1, 2, 2,1), (2, 2, 2, 2,1), (2, 2, 2, 2, 2) .  

In the same way, XF  can be considered as the design matrix of a saturated fraction of a 3 3 2× ×  

design under the same model, where the fraction is: 

 { }(1,1, 2), (1, 2, 2), (2, 2, 2), (2,3,1), (3,3,1), (3,3, 2) .  

2.2  k-cycles and orthogonal arrays 

As mentioned in the Introduction, in general, the problem of selecting saturated designs is non 

trivial and this is true also in the simple case of two factor design. The key ingredient to 

characterize a saturated design for two-factor designs is the notion of cycle, coming from Li et 

al.ear algebra and Combinatorics. Here we give a definition in terms of Design of experiments. 

Definition 1. A k-cycle ( 2k ≥ ) is a subset with cardinality 2k  of a factorial design I J×  with 

,I J k≥  where each of the k selected levels (among the I's and J's) of each factor has exactly two 

replications. 

Example 2. Some examples of fractions with k-cycles are given in Figure 2, where the cell ( , )i j  

has a bullet if the design point ( , )i j  belongs to the fraction. As described above, we identify the 
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design points with the cells of a contingency table in order to simplify the presentation. The 

corresponding fractions are: 

 { }1 = (1,1), (1,3), (2,1), (2, 2), (3, 2), (3,3), (4,3) ,F  

 { }2 = (1,1), (1,3), (2, 2), (2, 4), (3, 2), (3,3), (4,1), (4, 4) ,F  

 { }3 = (1,1), (1,3), (2,1), (2,3), (3, 2), (3, 4), (4, 2), (4, 4) .F  

Notice that 1F  contains a 3-cycle, 2F  and 3F  contain a 4-cycle. In 3F  the 4-cycle can be 

decomposed into two sub-cycles. 

In a natural way, the coordinate points of the design D  can be considered as the rows of a 

#D d×  matrix, where d is the number of factors. With a slight abuse of notation, we still call this 

matrix design. The same holds for fractions. In order to analyze the role of the k-cycles within 

the framework of Design of experiments we recall here a combinatorial definition of orthogonal 

array, see Hedayat et al. (1999) and Fontana (2013) . 

Definition 2. A fraction F  of a design 1 dI I× ×"  with # = nF  is an orthogonal array of size n 

and strength t if, for all t-tuples of its factors 
1
, ,i it
…F F , all possible combinations of levels in 

1
[ ] [ ]i it
I I× ×"  appear equally often. We denote such an orthogonal array with 

1( ; ( , , ); )dOA n I I t… . 
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Proposition 1. A k-cycle ( 2k ≥ ) is:  

   1.  an (2 ;( , ); )OA k k k t  where = 2t  if = 2k , and = 1t  if 3k ≥ ; 

   2.  the union of two disjoint orthogonal arrays ( ; ( , );1)OA k k k . 

PROOF.      1.  This fact follows from Definition 1. In particular, for = 2k  the fraction F  

coincides with the full factorial design 22 . 

   2.  We construct two disjoint fractions 1OA  and 2OA , 1 2 =OA OA∪ F  , iteratively. Starting 

from a given point of the fraction, we assign alternatively to 1OA  and 2OA  the points of the 

fraction, choosing the first or the second factor.  

• Choose a point of F , say 1 1( , )i j , and assign it to 1OA . 

• Consider the unique point of F  with the same level for the first factor, 1 2( , )i j , with 2 1j j≠ , 

and assign it to 2OA . 

• Consider the unique point of F  with the same level for the second factor, 2 2( , )i j , with 2 1i i≠ , 

and assign it to 1OA . 

• Consider the unique point of F  with the same level for the first factor, 2 3( , )i j  with 

3 2 1j j j≠ ≠  and assign it to 2OA . 

• And so on, until the unique point to choose is already assigned. 
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If not all points of the fraction have been assigned, i.e. if the fraction contains sub-cycles, it is 

enough to start the procedure above on the remaining points, until all the points are assigned. In 

this way both 1OA  and 2OA  have, by construction, exactly one replicate for each of the k levels 

of the two factors. 

Example 3. We show how the decomposition of a fraction into two orthogonal arrays works on a 

4-cycle. Let = = 4I J , and consider the 4-cycle 

 { }2 = (1,1), (1,3), (2, 2), (2, 4), (3, 2), (3,3), (4,1), (4, 4)F  

already considered in Example 3 and displayed in Figure 2. The relevant orthogonal arrays are: 

 { }1 = (1,1), (2, 2), (3,3), (4, 4) ,OA  

 { }2 = (1,3), (2, 4), (3, 2), (4,1) .OA  

To determine the number of k-cycles we need the notion of derangement. A derangement is a 

permutation such that no element appears in its original position. 

Proposition 2. The number of k-cycles is 

 !! ,
2

k k  

where !k  denotes the number of derangements of k elements. 
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PROOF. Let us consider 1OA  and 2OA  as in Proposition 1. 1OA  represents a permutation 1π  of 

[ ]k . The fraction 2OA  represents a derangement of 1([ ])kπ . 

To actually compute !k , recall that !k  can be approximated by !/ 0.5k e⎣ + ⎦ , where ⎣⋅⎦  is the 

floor function. For more details on this theory, see for instance Hassani (2003) . 

3   k-cycles and saturated fractions 

As mentioned in the previous sections, the connections between saturated designs and cycles 

have been explored in a slightly different framework, in the study of robust estimators in 

contingency tables analysis, see Kuhnt et al. (2013) Kuhnt, Rapallo, and Rehage. Nevertheless, 

we restate here the relevant theorem within the language of Design of experiments and we give 

the proof, as its main algorithm will be used later in the paper. 

Theorem 1. A fraction F  with = 1p I J+ −  points yields a saturated model matrix if and only if 

it does not contain cycles. 

PROOF. In view of Proposition 1, a cycle can be decomposed into two disjoint orthogonal 

arrays, 1OA  and 2OA , of k points each.  

⇒  Suppose that F  contains a cycle. When we sum the rows of the model matrix XF  with 

coefficient 1+  for the points in the 1OA  and with coefficient -1 for the points in 2OA , we 

produce a null Li et al.ear combination and therefore the determinant of XF  is zero. 
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⇐  Suppose that XF  is singular, i.e., there exists a null Li et al.ear combination of its rows with 

coefficients that are not all zero. Denote by ( , )i jr  the row of the model matrix corresponding to 

the point ( , )i j  of the fraction. Therefore, we have 

 1 ( , ) ( , )1 1
= 0i j p i jp p

r rγ γ+ +"   (3.1) 

and the coefficients 1, , pγ γ…  are non all zero. Without loss of generality, suppose that 1 > 0γ . 

As the indicator vector of the 1i -th level of the first factor is in the column span of X , and the 

same holds for the 1j -th level of the second factor, we must have: ( )a  a point with the same 

level for the first factor, say 1 2( , )i j , with negative coefficient in Equation (3.1); ( )b  a point with 

the same level for the second factor, say 3 1( , )i j , with negative coefficient in Equation (3.1). 

Therefore, there must be a point with level 3i  for the first factor and a point with level 2j  for the 

second factor with positive coefficients. Now, two cases can happen: If the point 3 2( , )i j  is a 

chosen point and its coefficient in Equation (3.1) is positive, we have a 2-cycle; otherwise, we 

iterate the same argument, and we yield a k-cycle, with > 2k . 

Remark 2. Proposition 1 and Theorem 1 lead to an interesting connection with the theory of 

Markov bases for this kind of experimental designs. In Algebraic Statistics, a Markov basis is an 

important object associated to a model for contingency tables under Li et al.ear constraints. 

Although a detailed presentation of such connection is beyond the goal of this paper, 

nevertheless it is interesting to provide a sketch of this issue. In fact, we have already identified 
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the two-factor design with a binary I J×  contingency table, and therefore the search of its 

corresponding Markov basis is a key question in Algebraic Statistics. 

The theory in Rapallo and Rogantin (2007) , Sections 4 and 5, states that the relevant Markov 

basis for our problem can be computed from the complete bipartite graph of the design. The 

complete bipartite graph has one vertex for each level of A, one vertex for each level of B and 

one edge connects each A-vertex with each B-vertex. A circuit of degree k is a closed path with 

2k  vertices, and with edges 

 1 1 1 2 2 2 1( , ), ( , ), ( , ), , ( , ), ( , ),k k ki j j i i j i j j i…   (3.2) 

where 1, , ki i…  are distinct A-indices and 1, , kj j…  are distinct B-indices. A concise presentation 

of the theory of bipartite graphs can be found in Sturmfels (1996) . The complete bipartite graph 

for the 3 4×  designs is depicted in Figure 3. 

Then, the Markov basis for our problem is defined by associating a Markov move to each circuit 

of the complete bipartite graph. Such move has entry 1 for each edge in even position in the 

sequence (3.2), and has entry -1 for each edge in odd position. 

Proposition 3. The k-cycles, decomposed into two orthogonal arrays as in Proposition 1, form a 

Markov basis. 

PROOF. It is enough to observe that each circuit of degree k naturally defines a k-cycle 

decomposed as in Proposition 1. 
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4  The number of saturated designs 

In this section we study the structure of the saturated fractions described in Section 2. 

Definition 3. Given a fraction F , we define its margins ,1 ,= ( , , )A A A Im m m…  and 

,1 ,= ( , , )B B B Jm m m…  where: 

 , 1
( , )1 2

= ( = ) for [ ],A i
d d

m d i i I
∈

∈∑  

 , 2
( , )1 2

= ( = ) for [ ],B j
d d

m d j j J
∈

∈∑  

where ( )⋅  denotes the indicator function. 

Notice that ,A im  is the number of the occurrence in  of the i-th level of the factor A. For 

example, the following saturated design 

 { }= (1,1), (1, 2), (2,1), (2, 4), (3, 2), (3,3), (4, 4) .F  

has margins = (2,2,2,1)Am  and = (2,2,1,2)Bm . 

The following lemmas for I I×  designs will be used later in the proof of the main result of this 

section. 

Lemma 1. Let IF  be a saturated I I×  design. Its margins satisfy the following conditions:  

   1.  , ,= = 2 1A Bm m I+ + −  where +  denotes the summation over the corresponding index; 

D
ow

nl
oa

de
d 

by
 [

Po
lit

ec
ni

co
 d

i T
or

in
o]

, [
R

ob
er

to
 F

on
ta

na
] 

at
 0

7:
25

 2
4 

Se
pt

em
be

r 
20

13
 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 
14 

   2.  , 1A im ≥ , , 1B jm ≥  for all , [ ]i j I∈ ; 

   3.  there exist , [ ]i j I∈  such that , ,= = 1A i B jm m ; 

   4.  let [ ]i I∈�  be an index such that , = 1A im
�

. Let ( , )i j� �  be the only point 1 2( , )d d  of IF  such 

that 1 =d i� . Then , > 1B jm
�

. 

PROOF.   1.  It is immediate to see that , 1=1 ( , )1 2
= ( = ) = # = 2 1I

A Ii d d
m d i I+ ∈

−∑ ∑ F
F  and the same 

holds for B. 

   2.  Refer to the matrix representation in Equation 2.2. By absurd, suppose that there exists an 

index i such that , = 0A im . We distinguish two cases: if 1i I≤ −  then X
IF

 has a null column, 

corresponding to ia ; if =i I , the sum of the columns 1 1, , Ia a −…  is equal to 0m . In both cases, 

I
XF  is singular. The same applies to B. 

   3.  This point follow immediately from items 1 and 2. 

   4.  For sake of readability, we suppose that =i I�  and =j I� . Thus, the sum of 1 1, , Ia a −…  is 

equal to the sum of 1 1, , Ib b −… . Hence, 
I

XF  is singular. 

Remark 3. The four conditions in Lemma 1 are not sufficient for characterizing the saturated 

fractions. A simple counterexample is the following fraction of a 5 5×  design: 

 {(1,1), (1,2), (2,1), (2,3), (3,2), (3,3), (4,4), (4,5), (5,4)},  
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that is not saturated, as it contains a 3-cycle. 

In the following result we analyze how the saturation property is preserved when we add one 

level to each of the two factors, moving from an I I×  design to an ( 1) ( 1)I I+ × +  design. 

Lemma 2. Let IF  be a saturated I I×  design, and define an ( 1) ( 1)I I+ × +  design containing IF  

as: 

 1 1 1= with = .I I I I IE E+ + + ∅∪ ∩F F  

Then 1I +F  is saturated if and only if 1IE +  has exactly two points, chosen in the union of the 

( 1)I + -th row with the ( 1)I + -th column of 1I +F , with the conditions , 1 1A Im + ≥  and , 1 1B Im + ≥ . 

PROOF. 1IE +  must contain exactly two design points, as # = 2 1I I −F  and 1# = 2 1I I+ +F . If one 

or two points are not in the union of the ( 1)I + -th row with the ( 1)I + -th column of 1I+ , there is 

a contradiction with Lemma 1. If both points are chosen in the ( 1)I + -th row and in the first I 

columns, the margin , 1 = 0B Im + , a contradiction. With an analogous proof, the two points can not 

be chosen in the ( 1)I + -th column and in the first I rows. All the remaining cases are valid 

choices, as one among , 1A Im +  and , 1B Im +  is equal to 1 and therefore no cycles can appear. 

We are now ready to approach the problem of computing the number of saturated fractions. 
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Proposition 4. Given ,1 ,= ( , , )A A A Im m m…  and ,1 ,= ( , , )B B B Jm m m…  with , ,= = 1A Bm m I J+ + + − , 

, 1, [ ]A im i I≥ ∈  and , 1, [ ]B jm j J≥ ∈ , the number of saturated designs with margins equal to Am  

and Bm  is 

 
,1 , ,1 ,

1 1
.

1,..., 1 1,..., 1B B I A A I

I J
m m m m

− −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− − − −⎝ ⎠⎝ ⎠

  (4.1) 

PROOF. First we consider =J I . Without loss of generality, we can assume that the margins of 

the fraction are arranged in the form: 

 ,1 ,2 , = 1,A A A Im m m≥ ≥ ≥"  

 ,1 ,2 , = 1.B B B Im m m≥ ≥ ≥"  

Since , = 1A Im , we can choose a point for the last row, but we have to exclude all design points 

( , )I h  with , = 1B hm , in order to satisfy the condition in Lemma 1, item 4. In the same way, we 

choose a point in the last column. 

We repeat the same argument on the ( 1) ( 1)I I− × −  design obtained by deletion of the last row 

and of the last column. It is immediate to see that both margins of such design have a component 

equal to 1. Hence, we iterate ( 2)I −  times the procedure above, until we have a degenerate 1 1×  

design with 1 as its unique element. 
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If we analyze this algorithm backward, we note that at each step we add two points according to 

the rule in Lemma 2, and therefore the constructed fraction is saturated. Thus, the procedure 

generates 

 
,1 , ,1 ,

1 1
,

1,..., 1 1,..., 1B B I A A I

I I
m m m m

− −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− − − −⎝ ⎠⎝ ⎠

 

as each row can be chosen until the margin decreases to 1, and the same holds for columns. 

Now, consider >J I . The B-margin can be arranged in the form: 

 ,1 ,2 , , 1 ,= 1 = = 1 = = 1.B B B I B I B Jm m m m m+≥ ≥ ≥" "  

With this ordering of the margins, the square I I×  table on the left can be analyzed as in the 

previous case, while for the last J I−  columns there is only the constraint given by the A-

margin, because the B-margin is always equal to 1, and therefore no k-cycles can appear. Hence, 

the formula in (??) is proved. 

Theorem 2. The number of saturated I J×  designs is ( 1) ( 1)J II J− − . 

PROOF. It follows from Proposition 4 and the classical multinomial theorem, by summation of 

all possible terms (see Equation 4.1) corresponding to all possible margins. 

We notice that the key consequence of the above enumerations is that the proportion of singular 

design matrices is not negligible, and it becomes as large as I and J increase. 
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Corollary 1. Let us randomly choose I J⊂ ×F  with # = 1I J+ −F . The probability that  is a 

saturated I J×  design is 

 
( 1) ( 1)

1

J II J
IJ

I J

− −

⎛ ⎞
⎜ ⎟+ −⎝ ⎠

 

and it tends to 0 as I and J goes to infinity. 

For instance, let us consider =I J . For = 3I  we obtain a saturated design in 64%  of cases, for 

= 4I  in 36%  of cases, for = 5I  in 19%  of cases, while for = 6I  in 10%  of cases. Hence, the 

characterization of non-singular designs, as given in Theorem 1, is useful from an algorithmic 

point of view, because the random choice of a subset with 1I J+ −  points does is not an efficient 

procedure. 

Example 4. We discuss here the case = = 4I J  extensively. The number of saturated designs is 

64 = 4096 , corresponding to 36%  of designs with 7 points. The possible configurations of 

margins, up to the permutation of the levels, are: (4,1,1,1) , (3,2,1,1)  and (2,2,2,1) . The table 

below shows the number of saturated design with such margins for one factor, see Proposition 4, 

the number of multiset permutations of such configurations of margins and the product of them.  
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Margin   #  from 

Prop. 4  

 Multiset 

permutations 

Total  

 (4,1,1,1)  
 

3
3,0,0,0
⎛ ⎞
⎜ ⎟
⎝ ⎠

  
4

1,3
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
4  

 (3,2,1,1)  
 

3
2,1,0,0
⎛ ⎞
⎜ ⎟
⎝ ⎠

  
4

1,1,2
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
36 

 (2,2,2,1)  
 

3
1,1,1,0
⎛ ⎞
⎜ ⎟
⎝ ⎠

  
4

3,1
⎛ ⎞
⎜ ⎟
⎝ ⎠

 
24  

 

 

The table below shows the number of saturated design with respect to the two margins. 
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Margins   (4,1,1,1)   (3,2,1,1)   (2,2,2,1)  

 (4,1,1,1)   16   144   96  

 (3,2,1,1)   144   1296   864  

 (2,2,2,1)   96   864   576  

 

 

Finally, Figure 4 shows the saturated 4 4×  designs identified by contingency tables. As in the 

previous figures, a cell ( , )i j  has a bullet if the design point ( , )i j  belongs to the fraction. For 

each margin configuration, a representative of each equivalence class of tables is displayed. The 

equivalence is up to permutation of rows, permutation of columns, and transposition. We notice 

that in two cases there is more than one equivalence class. 

5  Classification of saturated fractions 

Many criteria and methodologies exist to evaluate a given fraction. In this section we consider 

the word-length pattern and the state polytope of a saturated fraction. 
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5.1  Generalized word-length pattern and Gini index for two-level factors 

We focus here on the word-length pattern of a fraction as stated in terms of indicator function in 

Li et al. (2003) Li, Li et al., and Ye. We consider s factors, each with 2 levels, coded as 1+  and -

1. The full factorial design L  is {1, 1}s− . We denote by L  the set {0,1}s  and by X α , α ∈L , a 

simple term or an interaction. Given a single-replicate fraction ⊆F D , the indicator function of 

F  written in polynomial form is ( ) = ( )F x b X xα
αα∈∑ L

, with x∈D . We have 

1= ( )
2s x

b X xα
α ∈∑ F

. The reader can refer to Fontana et al. (2000) for a detailed presentation of 

the indicator function. 

The generalized word-length pattern of F  is the s-tuple ( )1( ), , ( )sγ γ…F F , where each element 

( )jγ F  measures the degree of aliasing of the interactions of order j (if = 1j  the simple terms are 

considered). More precisely: 

 
2

= , 0

( ) = , = 1, ,j
j

b j s
b
α

α α

γ
∈

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ …
L

F  

and 
=1

= s
kk

α α∑  is the order of interaction. 

Let us denote by ,enα  the number of points x of ⊆F D  for which ( ) =X x eα , with { 1, 1}e∈ + − : 

 , = ( ( ) = ),e
x

n X x eα
α

∈
∑  
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where ( ( ) = ) = 1X x eα  if ( ) =X x eα , and ( ( ) = ) = 0X x eα  otherwise. According to Proposition 

5, Fontana (2013) , the coefficients bα , α ∈L , of the indicator function F of a fraction F  can be 

computed using ,enα  as stated in the following result. 

Proposition 5. Let , = ( ( ) = )e x
n X x eα
α ∈∑  where { 1, 1}e∈ + − . It holds 

 ,1 , 1
1= ( ), .
2sb n nα α α α−− ∈L  

Remark 4. For = (0, ,0)α … , we get 0 = # / 2sb F  and therefore 

 ,1 , 1
0 = , .

2s

n n
b α α α−+

∀ ∈L  

For = 1α  we obtain the univariate margins of F  For example = (1,0, ,0)α …  provides 

 (1,0, ,0), 1
=( , , )1

= ( = ).e
x x xs

n x e
∈

∑…
…

 

Now we observe that there is a strong relation between the generalized word-length pattern of a 

fraction F  and the Gini indexes computed on ,1nα  and , 1nα − , Gini (1912) and Xu (2003) . The 

normalized Gini index G measures the inequality among the values of a frequency distribution. If 

we denote by 1, , nq q… , 1i iq q +≤ , the ordered frequencies corresponding to n units, it can be 

computed as 

 
1

1
=1 =11

2 1( , , ) = 1 , = .
1

n i

n i i k
i kn

G q q Q whereQ q
n q q

−

−
− + +∑ ∑…

…
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Proposition 6 specifies this relation. 

Proposition 6. Let Gα  the normalized Gini index corresponding to ,1nα  and , 1nα − , 

,1 , 1= ( , )G G n nα α α − . The following equality holds 

 
2

2

0

( ) = .bG
b
α

α

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

PROOF. From ,1 , 1
1= ( )
2sb n nα α α −−  we get 

 ,1 , 1

0 ,1 , 1

= .
n nb

b n n
α αα

α α

−

−

−
+

 

Now let us consider the case ,1 , 1n nα α −≤ . From the definition of normalized Gini index we get 

 ,1 , 1 1 1 ,1
,1 , 1

1= ( , ) = 1 2 , = .G G n n Q whereQ n
n nα α α α
α α

−
−

−
+

 

It follows 

 , 1 ,1

,1 , 1 0

= = .
n n bG
n n b
α α α

α
α α

−

−

−
−

+
 

The case , 1 ,1<n nα α−  gives 
0

= bG
b
α

α + . This completes the proof. 
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Corollary 2. The generalized word-length pattern ( )1( ), , ( )sγ γ…F F  of a two level single 

replicate fraction  of  can be computed as 

 2
,1 , 1

= ,
( ) = , = 1, , , = ( , ) .j

j
G j s whereG G n nα α α α

α α

γ −
∈

∑ …
L

F  

For two level designs we have proved that Gini indexes Gα  are sufficient to compute the 

generalized word-length pattern of a fraction F . Now we experiment the use of Gini indexes for 

saturated I J×  designs. 

We denote by Am  and Bm  the margins of an I J×  saturated design. As an example we consider 

two cases: = = 7I J  and = = 4I J . We compute (1,0) ( )AG G m≡  and (0,1) ( )BG G m≡  for all the 

possible margins, up to permutations of the levels of the factors. 

The following table summarizes the results. 
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, { , }Xm X A B∈    

( )XG m   

  2 

cm  

, { , }Xm X A B∈   

( )XG m  

 

(2) ( )XG m  

4-6 4,1,1,1   0.43     7,1,1,1,1,1,1   0.46   0.45  

3,2,1,1   0.33     6,2,1,1,1,1,1   0.44   0.44  

2,2,2,1   0.14     5,3,1,1,1,1,1   0.41   0.43  

 et al.e1-2    4,4,1,1,1,1,1   0.38   0.42  

  5,2,2,1,1,1,1   0.38   0.41  

   4,3,2,1,1,1,1   0.36   0.41  

   3,3,3,1,1,1,1   0.31   0.38  

   4,2,2,2,1,1,1   0.31   0.36  

   3,3,2,2,1,1,1   0.28   0.35  
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   3,2,2,2,2,1,1   0.21   0.26  

   2,2,2,2,2,2,1   0.08   0.12  

 

 

(2)G  is the second order Gini index and is used to distinguish between configurations that give 

the same Gini index G. It appears that Gini indexes are suitable to distinguish between 

unbalanced designs, like those with margins = = (4,1,1,1)A Bm m  or = = (7,1,1,1,1,1,1)A Bm m  

and more balanced designs, like those with margins = = (2,2,2,1)A Bm m  or 

= = (2,2,2,2,2,2,1)A Bm m , respectively. 

5.2  State polytopes 

We introduce this topic by a couple of simple examples. Let us consider two factors, both with 3 

levels. Let us make the hypothesis that they are quantitative variables x and y, so that it makes 

sense to consider polynomial models, with a different parametrization with respect to our 

previous setting. In particular, we consider the hierarchical model 

 2 2
1,0 2,0 0,1 0,2( ) =Y x x y yμ α α α α+ + + +E   (5.1) 

and the fraction 1 = {(1,1), (1, 2), (2, 2), (3, 2), (3,3)}F . The corresponding design matrix (1)

1
X  is 
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2 2

(1)
1 1

1
(1,1)

1 1 1 1 1
(1, 2)

1 1 1 2 4
= =(2, 2)

1 2 4 2 4
(3, 2)

1 3 9 2 4
(3,3)

1 3 9 3 9

x x y y

X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

⇒ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

F
F  

We observe that the fraction 1F  with respect to the model (5.1) is saturated because the 

determinant of the associated design matrix (1)

1
det( )X

F
 is different from zero. 

Let us now consider the same fraction 1F  but with a different hierarchical model: 

 2
1,0 2,0 0,1 1,1( ) = .Y x x y xyμ α α α α+ + + +E   (5.2) 

The fraction 1F  is saturated also for this new model (5.2) because (2)

1
det( ) 0X ≠

F
. 

Let us now consider a different design 2 = {(1,1), (1, 2), (1,3), (2,1), (3,1)} with the model (5.1). 

We get 

 

2 2

(1)
2 2

1
(1,1)

1 1 1 1 1
(1, 2)

1 1 1 2 4
= =(1,3)

1 1 1 3 9
(2,1)

1 2 4 1 1
(3,1)

1 3 9 1 1

x x y y

X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

⇒ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

F
F  

The fraction 2F  is saturated with respect to the model (5.1) because 
2

(1)det( ) 0X ≠F . 
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Finally we consider the same design 2F  but with the model (5.2). In this case we obtain that 2F  

is not a saturated design with respect to the model (5.2) because (2)det( ) = 0X
2F

. 

This example shows that saturated designs are different with respect to the hierarchical 

polynomials models that they allow to estimate. The fraction 1F  looks richer than the fraction 

2F  because it allows to estimate both the models (5.1) and (5.2). State polytopes are an efficient 

tool to deal with this kind of comparison. In qualitative terms state polytopes allow to associate 

to each design a polytope that contains all the polynomial models that can be estimated using it. 

The description of this methodology is out of the scope of this paper. We invite the interested 

reader to refer to the literature, Sturmfels (1996) , Berstein et al. (2010) Berstein, Maruri-Aguilar 

et al. (2012). 

Here we give the main concepts to understand the two-factor case. Consider a hierarchical 

polynomial model 

 ,
( , ) 1,2 1 2

( ) = i j
i j

i j L L L

Y x yα
∈ ⊂ ×
∑E  

where 1 = {0, , 1}L I −… , 2 = {0, , 1}L J −…  and 1,2 1 2L L L⊂ ×  is such that if 1,2( , )i j L∈  then 

1,2( , )i j L′ ′ ∈  for all i i′ ≤ , j j′ ≤ . Let 
( , ) 1,2

=
i j L

h i
∈∑  and 

( , ) 1,2
=

i j L
k j

∈∑  be the sums of the 

variable degrees appearing in the model. For instance, when = = 4I J , for the saturated model 

without interactions, 2 3 2 3
1,0 2,0 3,0 0,1 0,2 0,3( ) =Y x x x y y yμ α α α α α α+ + + + + +E , we have 

= = 6h k . 
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Given a fraction, for each permutation of the projections we can compute the points ( , )h k  

pertaining to all hierarchical estimable models. The convex hull of such points is the  state 

polytope of the fraction. All hierarchical models in the state polytope are estimable. The 

Minkowsky sum of the state polytope and the positive quadrant + +×R R  is named  state 

polyhedron of the fraction. 

In Figure 5 we report the state polyhedra corresponding to the six 4 4×  non-equivalent saturated 

fractions coming from our description of the no interaction model in Section 2; the one-factor 

projections, (4,1,1,1) , (3, 2,1,1)  and (2,2,2,1) , are displayed in the upper-right corner. The red 

points ( , )h k  represent saturated models. Notice that the point (6,6) , displayed in green, 

represent an estimable model in all the six configurations. 

It is evident that the bottom-right design, whose margins are both (2,2,2,1)  is richer, in terms of 

models that can be estimated, than the top-left designs, whose margins are both (4,1,1,1) . 

 When I and J increase, the number of configurations increases as well and the complete study 

becomes complicated. As an example, in Figure 6 we report the state polyhedra corresponding to 

two 7 7×  saturated designs. 

6  Conclusions 

In this paper we studied two factor saturated designs for main effect models from different 

perspectives. The results that have been obtained suggest several new directions and 

applications. 
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In the first part of this work, we provided the algebraic characterization of saturated designs, 

basing on k-cycles. Using such characterization, we proved a formula to compute the number of 

designs with given margins. As a consequence, we derived an explicit expression for the number 

of all the saturated designs. The extension to m-factor designs, 2m ≥  for models with main 

effects and interactions is under study. It is evident that such extension to any kind of saturated 

designs have a strong impact on the statistical practice. The characterization of m-factor designs 

in terms of cycles is described in Fontana et al. (2013). 

Finally we studied the classification of saturated designs. Given a list of fractions, we showed 

how the Gini indexes of their univariate margins could be useful to highlight the most balanced 

designs. The connections between our classification and other classical statistical criteria, like D-

optimality and minimum aberration, have to be explored. D-optimality for two factor designs has 

been already studied in Mukerjee et al. (1986). Minimum aberration is a classical criterion in 

Design of experiments and the reader can refer to Fries and Hunter (1980) and Li et al. (2003) 

for the basic definitions and results. 

The classification of saturated designs with respect to their univariate margins provides a set of 

non-isomorphic designs. Their use for nonparametric statistical testing, analogously to Basso et 

al. (2004) and Arboretti Giancristofaro et al. (2012) for orthogonal fractions, should be 

evaluated. 
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Figure  1: The model matrix X of the full factorial 3 4×  design and the model matrix XF  of the 

fraction in Example 1. 

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 b1 b2 b3

(1, 1) 1 1 0 1 0 0
(1, 2) 1 1 0 0 1 0
(1, 3) 1 1 0 0 0 1
(1, 4) 1 1 0 0 0 0
(2, 1) 1 0 1 1 0 0
(2, 2) 1 0 1 0 1 0
(2, 3) 1 0 1 0 0 1
(2, 4) 1 0 1 0 0 0
(3, 1) 1 0 0 1 0 0
(3, 2) 1 0 0 0 1 0
(3, 3) 1 0 0 0 0 1
(3, 4) 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

XF =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 a1 a2 b1 b2 b3

(1, 1) 1 1 0 1 0 0
(1, 2) 1 1 0 0 1 0
(2, 2) 1 0 1 0 1 0
(2, 3) 1 0 1 0 0 1
(3, 3) 1 0 0 0 0 1
(3, 4) 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
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Figure  2: The complete bipartite graph for a 3 4×  design. 
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Figure  3: State polyhedra for six non-equivalent 4 4×  designs. 
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Figure  4: State polyhedra for two non-equivalent 7 7×  designs. 
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Figure 5: State polyhedra for six non-equivalent 4 × 4 designs. 
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Figure 6: State polyhedra for two non-equivalent 7 × 7 designs. 
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