We consider a second kind weakly singular nonlinear Volterra Hammerstein integral equation de¯ned by a compact operator and derive a NystrÄom type interpolant of the solution based on Gauss-Radau nodes. We prove the convergence of the interpolant and derive convergence estimates. For equations with nonlinearity of algebraic kind, we improve the rate of convergence by using a smoothing transformation. Some numerical examples are given.
A NYSTROM INTERPOLANT FOR SOME WEAKLY SINGULAR NONLINEAR VOLTERRA INTEGRAL EQUATIONS / Baratella, Paola. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - STAMPA. - 237:(2013), pp. 542-555. [10.1016/J.CAM.2012.06.024]
A NYSTROM INTERPOLANT FOR SOME WEAKLY SINGULAR NONLINEAR VOLTERRA INTEGRAL EQUATIONS
BARATELLA, Paola
2013
Abstract
We consider a second kind weakly singular nonlinear Volterra Hammerstein integral equation de¯ned by a compact operator and derive a NystrÄom type interpolant of the solution based on Gauss-Radau nodes. We prove the convergence of the interpolant and derive convergence estimates. For equations with nonlinearity of algebraic kind, we improve the rate of convergence by using a smoothing transformation. Some numerical examples are given.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2510897
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo