Modern smart environments are equipped with a multitude of devices and sensors aimed at intelligent services. The presence of these diverse devices has raised a major problem of managing complex environments. A rising solution to the problem is the modeling of user goals and intentions, and then interacting with the respective smart environments using user defined goals. Generally, the solution advocates that the user goal(s) can be represented by combining devices (smart appliances and sensor/actuators) in particular states. `Domotic Effects' is a high level modeling approach, which provides Ambient Intelligence (AmI) designers and integrators with a high level abstract layer that enables the definition of user goals in a smart environment, in a declarative way, which can be used to design and develop intelligent applications. This paper describes an approach for the automatic evaluation of domotic effects combined through Boolean expressions, that can provide efficient and intelligent monitoring of the domotic structure of the environment. ``Effects Evaluation'' addresses the problem of finding the new values of all the domotic effects defined for the environment when one or more devices change their state or one or more sensor value is recorded in the environment, hence determining a new overall state of the environment. The paper also presents an architecture to implement the evaluation of domotic effects. Results obtained from carried out experiments prove the feasibility of the approach and highlight responsiveness of the implemented effect evaluation.

Real-Time Monitoring of High-Level States in Smart Environments / Corno, Fulvio; Razzak, Faisal. - In: JOURNAL OF AMBIENT INTELLIGENCE AND SMART ENVIRONMENTS. - ISSN 1876-1364. - STAMPA. - 7:2(2015), pp. 133-153. [10.3233/AIS-150310]

Real-Time Monitoring of High-Level States in Smart Environments

CORNO, Fulvio;RAZZAK, FAISAL
2015

Abstract

Modern smart environments are equipped with a multitude of devices and sensors aimed at intelligent services. The presence of these diverse devices has raised a major problem of managing complex environments. A rising solution to the problem is the modeling of user goals and intentions, and then interacting with the respective smart environments using user defined goals. Generally, the solution advocates that the user goal(s) can be represented by combining devices (smart appliances and sensor/actuators) in particular states. `Domotic Effects' is a high level modeling approach, which provides Ambient Intelligence (AmI) designers and integrators with a high level abstract layer that enables the definition of user goals in a smart environment, in a declarative way, which can be used to design and develop intelligent applications. This paper describes an approach for the automatic evaluation of domotic effects combined through Boolean expressions, that can provide efficient and intelligent monitoring of the domotic structure of the environment. ``Effects Evaluation'' addresses the problem of finding the new values of all the domotic effects defined for the environment when one or more devices change their state or one or more sensor value is recorded in the environment, hence determining a new overall state of the environment. The paper also presents an architecture to implement the evaluation of domotic effects. Results obtained from carried out experiments prove the feasibility of the approach and highlight responsiveness of the implemented effect evaluation.
File in questo prodotto:
File Dimensione Formato  
domoticEffectsEvaluation.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2510296
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo