
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Real-Time Monitoring of High-Level States in Smart Environments / Corno, Fulvio; Razzak, Faisal. - In: JOURNAL OF
AMBIENT INTELLIGENCE AND SMART ENVIRONMENTS. - ISSN 1876-1364. - STAMPA. - 7:2(2015), pp. 133-153.
[10.3233/AIS-150310]

Original

Real-Time Monitoring of High-Level States in Smart Environments

Publisher:

Published
DOI:10.3233/AIS-150310

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2510296 since:

IOS Press

Real-Time Monitoring of High-Level
States in Smart Environments

Fulvio CORNO a,1 and Faisal RAZZAK b

a Dipartimento di Automatica ed Informatica, Politecnico di Torino, Turin, Italy
E-mail: fulvio.corno@polito.it

b Dipartimento di Automatica ed Informatica, Politecnico di Torino, Turin, Italy
E-mail: raja.faisal@gmail.com

Abstract
Modern smart environments are equipped with a multitude of devices and sensors
aimed at intelligent services. The presence of these diverse devices has raised a ma-
jor problem of managing complex environments. A rising solution to the problem is
the modeling of user goals and intentions, and then interacting with the respective
smart environments using user defined goals. Generally, the solution advocates that
the user goal(s) can be represented by combining devices (smart appliances and
sensor/actuators) in particular states. ‘Domotic Effects’ is a high level modeling ap-
proach, which provides Ambient Intelligence (AmI) designers and integrators with
a high level abstract layer that enables the definition of user goals in a smart envi-
ronment, in a declarative way, which can be used to design and develop intelligent
applications. This paper describes an approach for the automatic evaluation of do-
motic effects combined through Boolean expressions, that can provide efficient and
intelligent monitoring of the domotic structure of the environment. “Effects Eval-
uation” addresses the problem of finding the new values of all the domotic effects
defined for the environment when one or more devices change their state or one or
more sensor value is recorded in the environment, hence determining a new overall
state of the environment. The paper also presents an architecture to implement the
evaluation of domotic effects. Results obtained from carried out experiments prove
the feasibility of the approach and highlight responsiveness of the implemented
effect evaluation.

Keywords. Ambient Intelligence, Domotic Effects, Domotic Effect Evaluation,
Higher level modeling, Monitoring Smart Environments

Introduction

The Ambient Intelligence (AmI) community identified that the provision of intelligent
services lies at the core of smart environment systems, for which a wide array of devices
are employed [16]. These intelligent services consist of automation of different services
and provide comfort of living and easy management for users [11,12]. Bader et al. [1] de-
scribed smart environments as heterogeneous dynamic ensembles: groups of co-located
devices of different types. The presence of diverse devices has given rise to a major

1Corresponding Author: Dipartimento di Automatica ed Informatica, Politecnico di Torino, Torino, Italy
E-mail: fulvio.corno@polito.it

Core Concepts

Core layer

AmI layer

Instance layer

Boolean Real . . .

HVAC Lighting

House 1 House 2

SecureHome

TVScenario

Ventilation

A
m

I
D

e
s
ig

n
e

rU
s
e

r

F
ra

m
e

w
o

rk

Figure 1. The Domotic Effects framework - Logic Architecture [9]

problem of managing smart environments in recent years. Current research is shifting
focus from a traditional device-centric vision [13,17,20,21,24,26] to abstract modeling
approaches [9,29,30] providing a higher level of design for interaction and control in
smart environments [15].

In order to provide easy management of smart environments, a rising solution among
abstract modeling approaches has been the modeling of user goals or intentions. Gener-
ally, the solution advocates the need to model user goals and then, to implement those
goals by using a combination of devices installed in the environment. One such approach
is the ontology based Domotic Effects (DE) framework [9,25] which models user goals
or intentions (called domotic effects). The DE framework addresses the concerns of users
as well as AmI designers. The users can program their personal environments by declar-
ing their intentions and the achievement criteria for each intention are enforced by us-
ing a combination of devices. Most of the other approaches limit the ability of residents
of a house or building to program their environment in terms of specific devices and
their functionalities [17,18,21,22,24]. On the other hand, the AmI designers have an ab-
straction layer that enables the definition of generic goals inside the environment, in a
declarative way, which can be used to design and develop intelligent applications: the
AmI designer may choose the most suitable representation and define suitable functional
operators. The logical architecture of the DE framework is shown in Figure 1.

The context is that every device in the environment is capable of providing certain
visible (perceivable) effects for a user. These effects are fulfilled by possible states of the
device. For example, an effect of illumination can be provided by a lamp in “On” state
value or by a window shutter in “Open” state value. However, modern devices are com-
plicated in nature and a single device can have a composite state, which may be modeled
as concurrent sub-states. These sub-states are orthogonal regions combining multiple de-

scriptions of a device. For example, a TV set may have an on-off state (with possible val-
ues On or Off), a volume state (with a possible value between 0 and 100), a channel state
(with a possible value depending on the set of programmed channels). A device state is
therefore composite in nature and therefore it is modeled as the parallel composition of
different sub-states. To clarify, this paper the term state refers to composite state of a
single device.

There might be cases in which an effect can only be fulfilled by using a combination
of devices having particular states. For example, the effect of securing a building may
require all the exit doors and windows to be closed. In the context of DE framework, an
effect that depends upon a single device (having a state or sub-states) is called a simple
effect (SE) and an effect dependent on a combination of devices (having particular states
and sub-states) is called a complex effect (CE). A CE is described by combining SEs and
other CEs.

The DE modeling framework has a wide scope that aims, in the long term, at provid-
ing a unified approach for monitoring and controlling environments using user goals or
intentions. The control aspect of the DE framework has been discussed [9] in the context
of energy conservation. However, the ability of the DE framework to monitor the overall
state of an environment has not been discussed yet. This paper expounds on the ability
of the DE framework to monitor the overall state in real time (called Effect Evaluation in
this paper). The monitoring amounts to correctly mapping the devices and their states in
terms of user goals or intentions. It can provide users of smart environment the ability of
monitoring the overall state of the environment in terms of more meaningful user intelli-
gible goals instead of particular device states. Consider a house that needs to be secured
at night. The securing of the house requires all doors and/or windows to be closed. If
either by chance a door is left opened or a thief breaks a door open, then the resident of
the house needs to know the implication of the door being opened at an abstract level. In
this case, the door being left opened means that the house is not secure anymore or vice
versa.

The discussion in this paper focuses on the applicability of the DE framework to
Boolean application domains, i.e., domains in which the outcome of a user goal or inten-
tion can be either active (true) or inactive (false). This covers most monitoring use cases
in smart homes, offices and industrial plants.

Formally, Effect Evaluation means computing the value of all domotic effects start-
ing from the values of each device state and sensor value, according to the definition
of the domotic effects and the semantics of the functional operators (that might change
depending on the application domain). The computation should be in near real-time, i.e.,
comparable with the latency of home automation systems (roughly under one second),
and well integrated with the smart environment system (e.g., a home gateway). The con-
ception, architecture, implementation and possible application of Effect Evaluation are
discussed in this paper.

The paper is divided into six sections. Section 1 provides overview of existing liter-
ature. Section 2 provides an overview of the underlying technologies. The problem ad-
dressed in this paper is formally defined in Section 3, while the general approach adopted
for effect evaluation is described in Section 4, and later Section 4 also defines the adopted
architecture and implementation. Section 5 shows results of the experiments and Sec-
tion 6 concludes the paper.

1. Related Works

A neuro-cognitive model for Environment Recognition, Decision-making, and Action
execution inside automated buildings is proposed in [28,29,30]. They introduce separate
models for perception known as Artificial Recognition System-PerCeption (ARS-PC)
and decision making, identified as Artificial Recognition System-PsychoAnalysis (ARS-
PA). The perception models provide a three layered architecture, i.e., Micro Symbol
Layer, Snapshot Symbol layer and Representation layer. Micro symbol layer are formed
from sensor input data, which are combined to create snapshot symbols in the Snapshot
symbol layer and then representation symbols are created corresponding to the percep-
tion of the system in the Representation layer by combining snapshot symbols. The rep-
resentation symbols are then fed to the ARS-PA to perform a decision making process.
In comparison, the “Domotic Effects” approach provides modeling of generic goals and
their achievement criteria (DogEffects ontology). Besides perceiving and monitoring the
environment, it has the ability to enforce and optimize those goals based on a possible
set of paths [9]. Moreover, Domotic Effects provide separate views for system designers
and users of the environment. System designers are allowed to define several different
types of combinations for different application domains and users can define their own
achievement criterias. This flexibility is missing from the neurocognitive model.

Hemrik Dibowski et al. [14] proposes an automatic design approach for large build-
ing automation systems (BAS). The top-down approach initiates by defining the struc-
ture of the building, then the system integrators define requirements using ontologies.
The next step is to define abstract designs and required functionalities which are then
transformed to detailed designs of the specific BAS. As indicated, the complexity of this
transformation task can be very high, making the approach complicated and lacking flex-
ibility to achieve detailed designs. On the other hand, the “Domotic Effects” approach
is flexible in providing system designers separate working space independent of lower
level details and allowing them to focus on general characteristics of the environment,
which can later easily be extended or changed (AmI layer). The users have the ability to
play a key role in programming their personal spaces.

While techniques addressing both the user and the system designer concerns are rare
in literature, several papers have documented them separately. Rashidi et al. [24] propose
a software architecture which incorporates learning techniques to discover patterns in
user’s daily activities. While the patterns of user’s activities are observed and stored, the
user can also define their own activity patterns as well. The activity pattern are observed
as changes in states of devices occur in the house. Hierarchical activity model (HAM)
is used to store discovered activity patterns and their temporal knowledge. The activities
are discovered based on a device centric vision, which does not allow users to view the
bigger picture about the state of the environment, in a concise way. On the other hand,
Domotic Effects can provide the bigger picture about the environment concisely and in
a manner understood by the user.

Cheng et al. [8] propose a smart home reasoning system called ASBR system. The
system learns user’s preferences by adaptive history scenarios and put forwards a way to
rebuild reasoned knowledge in other smart homes. They propose that contextual infor-
mation can be extracted and reasoned as a set of scenarios. In addition, the system can
derive personal habits and store them in OWL files. Though it does provide an organi-
zation mechanism but here the concept of scenario is different from our proposed effect.

Effect

Simple

Effect

dogont:

Controllable

dogont:

StateValue

isAfunctionOf

effectOf (=1)

Complex

Effect

Commutative

Operator

Or

Operator

And

Operator

Complement

Operator

Effect

Operator

NotCommutative

Operator
NonUnary

Operator

isA

hasOperand

(=1)

hasOperand (only)

operandEffect (=1)

opName

OR

ANDopName

opName

NOT

opName

Unary

Operator

hasResult (=1)

isA

isA

isA

isA

Operand

Ordered

OperandhasOperand

hasPositionN

hasOperand (>=2)

isA

isA

isA

Core Layer

AmI Layer

(Boolean)

Boolean Simple

Effect

isA

stateValue

value
Device Description

Ontology

Figure 2. The DogEffects ontology (Core and AmI layers) - Boolean Application Domain

“Domotic Effects” are different from scenarios as it is not a storage of historical events or
repetitive tasks, but a modeling of the environment as envisioned by the user. Therefore,
during the process of monitoring the environment, the user has enhanced comprehension
about his/her environment.

Salomons et al. [27] introduce a generic model for intelligent homes that describe the
current state. the target state and the transition. In the context of monitoring the current
state, a persona model is put forward. A persona is a model of individuals that share
preferences. It stores the preferences in a second layer. The detailed description, type
and frequency of the stored preferences are missing. Moreover, the approach seems to
be based on storing preferences on individual devices which is contrary to the approach
presented in this paper.

In the health-care domain, Esposito et al. [19] present a pervasive system for context-
oriented monitoring purposes which operates on sensor data and is based on a versatile
framework. The framework is organized according to a general purpose agent-based ar-
chitecture centered around an ontological context representation. It identifies and moni-
tors three kind of alarm events, i.e., Instantaneous, Interval and Multiparametric. Instan-
taneous and interval alarms are defined over individual sensors, while the multiparamet-
ric alarms are built by considering several parameters from multiple sensors. Though the
instantaneous and interval alarms can be equated with simple effects and multiparametric
can be compared with complex effects, the fundamental difference lies in the flexibility
provided by the DE framework to define effect operators that govern combinations of
simple and complex effects. Moreover, this paper presents a detailed ontological model
(see Section 2) that allows domotic effect based monitoring to be applicable to several
application domains. Last but not the least, the results presented in [19] are prelimi-
nary and the adopted approach takes time in seconds to monitor even simple scenarios.
This paper presents experimentation in detail and the adopted approach monitors several
complicated scenarios simultaneously and the response time is in few milliseconds (see
Section 5).

Core Layer

AmI layer

(Boolean Domain)

Instance Layer

functionOf effectOf

Effect

Simple

Effect

dogont:

Controllable

dogont:

StateValue

isA

functionOf (>=1)

effectOf (=1)

effectOf

Complex

Effect

Commutative

Operator

Alternate

Operator

Or

Operator
And

Operator

Complement

Operator

Effect

Operator

NotCommutative

Operator

NonUnary

Operator

isA

hasOperand

(=1)

hasOperand (only)

operandEffect (=1)

opName

Or Alternate

And
opName

opName opNameNot

opName

Unary

Operator

hasResult (=1)

isA

isA

isA

Operand

Ordered

Operand

hasOperand

hasPositionNhasOperand (>=2)

isA

isAisAisA

functionOf

Op4

Op5

operandEffect

Or1

hasResult

hasOperand

isA

Boolean

Simple Effect

value

operandEffect

hasOperand

Figure 3. An example of defining a CE and SEs - Lamp Illumination use case

Lee et al. [23] present a ubiquitous system to monitor the real-time context of its
individual objects and their collaboration in smart spaces. The system is called UMONS
and it is able to monitor individual devices or sensors, and then aggregates the informa-
tion coming from devices or sensors. In the end, the information is presented in a graph-
ical format. The approach presented in [23] is device centric and does not allow real-
time monitoring of multiple high-level states in smart spaces. UMONS is evaluated over
well-being home services, but the quantitative results of the evaluation are not presented.

Personal spaces play an important role in group or individual self-definition: rather
than just using them for a specific purpose, users pour their personalities and lives in the
way they transform their environments [11]. “Domotic Effects” is one such framework
that can enable the monitoring of the environment as the user wishes to perceive it, i.e.,
in terms of user-defined goals. Several other monitoring techniques have been proposed
in the literature [6,32], but the “Domotic Effects” offer several advantages. First, being
an ontology based approach offers large scale adoption, application development, sys-
tem prototyping and a solid technological infrastructure [7]. Second, it offers a unified
framework for modeling, controlling and monitoring the environment. The modeling and
controlling aspects were discussed in [9] and this paper discusses the monitoring aspect.
Third, the approach is robust (see Section 5) and scalable.

2. Foundations

This section briefly defines technologies and concepts lying at the foundation of the
proposed approach in this paper.

2.1. User Goal Modeling: DogEffects Ontology

In order to represent the formal knowledge base of the DE framework, a 3-tiered ontol-
ogy was proposed, called DogEffects ontology. The DogEffects ontology is formalized
by using the OWL Web Ontology Language [31]. It models the user-defined goals and
their mapping to devices and their corresponding states. As it requires the concepts of
devices and their states, the modularity pattern was adopted for designing the DogEf-
fects ontology. Modularity allows the ontology to easily integrate with various ambient
ontologies that model environments.

Three modeling layers are defined, with decreasing usage complexity: a core layer,
designed to establish the basic semantics of effects, an AmI-layer allowing AmI design-
ers to define SEs and domain-dependent operators for combining them into CEs, and
finally an instance layer where specific effects (both SEs and CEs) can either be defined
by AmI designers or by final users.

2.1.1. Core Layer

The core layer defines concepts lying at the foundation of the DE framework. The main
concepts of the core layer are depicted in Figure 2. Every Domotic Effect is formally or-
ganized into a concept hierarchy inheriting from the Effect class. As aforementioned,
effects can either be simple (SimpleEffect) or complex (ComplexEffect). For
both kinds of effects, domain-dependent subclasses can be defined in the AmI layer.

Simple Effects (SEs) are the terminal nodes of the representation and compute a
value depending on a device state or sensor value. SEs act as interface points between
the DogEffects ontology and some device description ontology (e.g., DogOnt [4]). The
effectOf and functionOf open relations (i.e., relations without range restrictions)
permit to identify the device and the device state for which a given SE is computed,
respectively.

Every Complex Effect (CE) represents a functional expression of SEs and other
CEs declared by using domain-dependent EffectOperator defined in the AmI layer
of the DE framework. The nature of the effect operator depends upon the application
domain, i.e., Boolean, Real or Energy Saving. Effect operators take either SE or CE as
operands (through the hasOperand relation) and generate new CEs as result, identified
by means of hasResult relation.

Furthermore, two main disjoint families of operators are modeled: unary operators
(UnaryOperator) and non-unary operators (NonUnaryOperator).

2.1.2. AmI Layer

The AmI layer allows AmI designers to declare the set of effect operators that can govern
the combinations of domotic effects depending on the application domain. As this paper
focuses on Boolean application domains, the AmI layer (see Figure 2, bottom) has been
populated with a basic set of Boolean operators, i.e., Complement, And, Or, and some
derived Boolean operators as explained below:

 Lamp Illumination

^

Lamp4 ON

SE SE

CE

Lamp5 ON

Figure 4. A simplified representation of the Lamp Illumination CE

1. ImpliedOperator: This operator represents the “logical implication” relationship.
2. AlternateOperator: This operator represents a function whose value is active

when exactly one of its operands is active. It is commutative and non-unary.
Mathematically, the Alternate effect operator can be defined as Eq. (1)

Alt(x1 . . .xn) = ∑
i

(
xi ·∏

j 6=i
x j

)
. (1)

3. ExactlyMOperator: This non-unary operator represents a function whose value
is active when exactly M of its operands are active. Suppose there are n operands,
i.e., OP= {1,2, . . .n}. Then the ExactlyMOperator effect operator can be defined
as Eq. (2).

ExactlyM(x1 . . .xn) = ∑
O⊆OP,|P|=M

[
∏
i∈O

xi ·∏
j/∈O

x j

]
(2)

2.1.3. Instance Layer

The Instance layer contains all the domotic effects (defined as an instance of DogEf-
fects ontology) over a particular environment. A trivial “Lamp Illumination” use case
is illustrated in Figure 3. The “Lamp Illumination” use case will be represented as a
“Lamp Illumination” CE (an instance of ComplexEffect). Suppose the “Lamp Il-
lumination” can either be achieved using “Left Wall Lamp Illumination” SE or “Right
Wall Lamp Illumination” SE. The combination is governed by the “Or1” (instance of
OR Operator) class. The “Left Wall Lamp Illumination” SE represents the “Lamp4”
in “OnState lamp4” state, while the “Right Wall Lamp Illumination” SE represents the
“Lamp5” in “OnState lamp5” state. The instance layer can be connected to any ambient
ontology defining the conepts of devices and theirs states. In this paper, the devices and
their states are represented as instances of the DogOnt ontology (see Section 2.3). In
order to provide easy comprehension Figure 4 shows the simplified representation of the
“Lamp Illumination” CE.

The simplified representation of an evolved “Dining@Lunch” CE is shown in Fig-
ure 5. The “Dining@Lunch” CE corresponds to the overall state of a dining room, in a
house, during lunch hours. It includes isolating the kitchen (“Isolated Kitchen” CE), illu-
minating the dining room (“LampIllumination” CE) and switching on the television for
entertainment (“TV Entertainment” SE). The functional representation of the use case

Isolate Kitchen

Door_Kitchen OFF

Lamp Illumination

^
Lamp5 ON Lamp4 ON

SE
SE

SE SE

CE

CE
^

Fan_Kitchen OFF

ShutterActuator_Kitchen OFF

SE

Tv1 {ON, Volume_40}

SE

^

Dining@Lunch

CE

Figure 5. A simplified representation of the Dining@Lunch CE

Table 1. Dining@Lunch functional form

Dining@Lunch = And(IsolateKitchen,T v Entertainment,LampIllumination)

IsolateKitchen = And(Door Kitchen Isolate,Fan O f f ,Kitchen Flow)

LampIllumination = And(Le f tWallLampIllumination,RightWallLampIllumination)

RightWallLampIllumination = SE(Lamp5,OnState lamp5)
Le f tWallLampIllumination = SE(Lamp4,OnState lamp4)
Door Kitchen Isolate = SE(Door Kitchen,O f f State Doorkitchen)

Fan O f f = SE(FAN Kitchen,O f f State Fankitchen)

Kitchen Flow = SE(ShutterActuator Kitchen,U pState SAKitchen)

T v Entertainment = SE(T v1,OnState T v1,Volume 40)

is outlined in Table 1. A SE is represented as SE(device, sub-state(s)). For instance, the
“TV Entertainment” SE is represented as TV Entertainment = SE(Tv1, OnState Tv1,
Volume 40). On the other hand, a CE is represented as Operator(DE1,DE2 . . .). For
instance, the “ Dining@Lunch” CE is represented as Dining@Lunch = And(Isolate
Kitchen, TV Entertainment, Lamp Illumination).

2.2. Domotic Effects Formalization

This paper summarizes only the most important concepts about Domotic Effects. The
reader interested in the full detail is referred to [25]

Given an intelligent ambient environment managing a set of devices D , each device
d is associated with a set of allowed states S(d); depending on the nature of the device,
states may be discrete (e.g., {On, Off} for a lamp) or continuous (e.g., [0, 100] for a vol-
ume knob). During system evolution, the actual state of each device is a time-dependent
function s(d, t) ∈ S(d).

The whole environment possesses a global state space G , represented by the Carte-
sian product of all device state spaces: G = ∏d∈D S(d), thus defining a global environ-
ment state g ∈ G .

Formally, a Domotic Effect DE is defined as a function of the global state space:
DE : G → V , where V is an application-dependent value space. For Boolean application
domains, V = {0,1}. A Simple Effect SE is a function that considers the state of only
one device, SE : S(d)→ V ; such function is time-dependent since it depends on s(d, t).
An operator op is a function op : V N → V , where N represents the number of operands
of the specific op. A Complex Effect CE is represented by a couple (op,(DE1 . . .DEN))
composed of an operator name op and a list of Domotic Effects DEi whose values are
used as operands. Such function is also time-dependent.

A set I contains all domotic effects defined for an environment, i.e., I =
{DE1,DE2 . . .DEM}.

2.3. DogOnt

DogOnt [4] is an ontology for modeling smart environments; representing architectural
elements (rooms, walls, etc.) of the environment, the devices placed inside the environ-
ment, and their states and functionalities [4]. It provides formal modeling and suitable
reasoning capabilities through semantic web technologies. DogOnt has been designed
along 7 main hierarchical trees, corresponding to the Building Thing, Building Envi-
ronment, Functionality, Command, DomoticNetworkComponent, State, StateValue con-
cepts. Classes descending from Building Environment and Building Thing are used to
describe the environment. DogOnt provides the ability to model different devices that
exist in a house through the Building Thing concept and DogOnt has a clear separation
between the Controllable and Not Controllable devices. The Functionality class is related
to the different functionalities of the device. The Command and Notification concepts
are linked to specific functionality instances. Network modeling is achieved through Do-
moticNetworkComponent. State and StateValue are used to model the different states of
a device.

3. Problem Statement

Given the definitions in the previous sections, the problem of Effects Evaluation deals
with computing the value V for all the Domotic Effects DEi defined in the instance layer
of the “DogEffects” ontology, i.e., I . The domain of a domotic effect value depends
upon the application domain. As this paper addresses Effects Evaluation restricted to
Boolean application domains, the value of a domotic effect (SE or CE) can either be true
or false. The AmI layer encoded with Boolean operators is sufficient to model most con-
trol applications and many monitoring use cases in smart homes, offices, and automated
industrial plants.

All the domotic effects combined represent the overall state of the environment at
an abstract and user intelligible level. A change in the value of any one of the domotic
effects will change the overall state of the environment. To put it simply, at any time
instant the abstract state of the environment is represented by the set of domotic effects
that are active. During the course of operation, different devices change their states and
different sensor values are recorded. Each time a device changes its state, the values of
several domotic effects dependent on the device might change their values from true to
false or vice versa, therefore triggering a change in overall state of the environment.

For a SE, the value is active when the corresponding device is in the state defined
for the SE. A CE is a combination of other domotic effects (both simple and complex)
and the type of combination is governed by an effect operator defined in the instance
layer of the DogEffects ontology. Therefore, the value is dependent upon the values of
its children and the effect operator associated with the CE.

The primary objective of the paper is to design, develop and verify a software mod-
ule that performs the process of Effect Evaluation in the context of the DE framework.
Since the module needs to be verified inside a smart environment system, the Effect
Evaluation module should meet the following set of requirements:

1. The module should be able to monitor the change of state of all the devices in-
stalled in the environment.

2. Different third-party applications should be able to register themselves to this
module, to listen to any change in the values of the domotic effects.

3. During the Effect Evaluation process, the module should asynchronously send
out notifications to the registered applications.

4. The process of Effect Evaluation should be robust without the user noticing any
delay of the monitoring service, i.e., to respond in near real-time.

5. The module should provide integration with a smart environment system.

4. Solution

4.1. Approach

In order to meet the objectives of the paper a module named “Domotic Effects Evalu-
ation” was developed. All domotic effects are organized in a hierarchical structure that
corresponds to the logical structure defined in the Instance layer of the DogEffects on-
tology. The structure is called Effect Node Network (ENN) and each domotic effect is
represented as a node in the ENN. For the Dining@Lunch use case defined in Section 2,
the ENN is shown in Figure 6.

The module listens to any change in state of the devices and if any change occurs, it
performs the process of Effect Evaluation. The process of Effect Evaluation means com-
puting new values of all the domotic effects (SEs and CEs). In order to efficiently com-
pute new values of domotic effects in the ENN, the classical Zero Delay Event Driven
Logic Simulation algorithm [5] is chosen to perform the evaluation. The algorithm was
chosen because of the property of having linear execution time in the number of nodes
and taking into account that all operators are time independent.

In the DE framework, the effect operators defined in the AmI layer represent the
evaluation criteria. Therefore, a proper software implementation of each effect operator
in the Boolean application domain is provided, i.e., Complement, And, Or and Alternate.

Level: 1

Figure 6. ENN for the Dining@Lunch use case

When a device changes its state, the values of the SEs associated with the device may
change. If the values of SEs are changed, the evaluation of the CEs dependent on them
are scheduled and recursively evaluated. During the evaluation, if a change in the value
of a domotic effect (simple or complex) is observed, an asynchronous notification is sent
out to interested third-party applications. This whole process is called Effect Evaluation.
For example, considering the ENN shown in Figure 6 at any instant, Lamp5 changes
its state from off to on. It would possibly require the evaluation of all domotic effects
in the ENN. The value of the RightWallLampIllumination SE will become “true” and
therefore, the values of all the CEs dependent on RightWallLampIllumination SE would
need to be recomputed, i.e., in this case only LampIllumination CE. Again, if the value
of LampIllumination CE changes (different from previous value) then the values of all
the dependent CEs need to be recomputed, otherwise the values of all the dependent CEs
need not be recomputed. This recomputation of values is performed for the complete
ENN whenever the value of a SE is changed.

The Effect Evaluation approach being proposed in this paper is designed to be
generic and it can be adopted across different ontology driven smart environment sys-
tems. The generalization comes from the fact that the approach is based on the modu-
lar DogEffects ontology which can be integrated with other ambient ontologies having
at least two concepts, corresponding to devices and their states (in our case, DogOnt is
adopted). In order to gauge the proposed approach according to different criterias (per-
formance and integration), the Domotic OSGi Gateway (Dog) was chosen as a smart en-
vironment system. Dog [3] is an ontology-powered Domotic OSGi Gateway that is able
to expose different domotic networks as a single, technology neutral, home automation
system. It is versatile as it is built on top of the OSGi framework and the adoption of
semantic modeling techniques allows Dog to support intelligent operations inside the
home environment. Dog uses the DogOnt ontology to model an environment and it pro-
vides the ability to overcome issues like interoperability among different device/sensor
protocols, validating device state or sensor value, etc. However, other ontology driven
smart environment systems may also be adopted if they provide the ability to represent
devices/sensors, their states/values and the ability to monitor the state/value of a device.

Figure 7. Information template of each domotic effect

4.2. Architecture

The Dog architecture was extended to integrate the DE based approach in smart environ-
ments. Dog has a modular architecture composed of 12 core bundles, among which the
HouseModel bundle is responsible for managing the DogEffects and DogOnt ontologies.
The HouseModel bundle provides information about all the domotic effects defined in
the environment. A DogState bundle monitors the state of the devices installed in the en-
vironment and a Domotic Effects Evaluation bundle was developed, which organizes all
the domotic effects in the ENN and carries out the effect evaluation process at runtime.
Figure 1 shows the architecture of the proposed solution and highlights the components
of the Domotic Effects Evaluation bundle. The functionalities of three three bundles are
explained below.

4.2.1. HouseModel Bundle

The HouseModel bundle exploits standard DogOnt classes and DogOnt instances re-
ferred by a specific environment to provide knowledge-rich access to the environment
properties and capabilities. It also accesses the DogEffects ontology classes and their in-
stances, and provides all the management operations related to the DogEffects ontology.
At Dog startup, inference and reasoning tasks are carried out at this level for computing
consistency checking and transitive closure, at runtime. Moreover, the bundle gives the
information associated with all the domotic effects defined in the environment to the Do-
motic Effects Evaluation. In case of a CE, the associated information includes the name
of the effect, the name and number of children, the type of the domotic effect (defined
using the Effect operator). In case of a SE, the name of the effect and its associated device
in a given state is mentioned. The information regarding each domotic effect provided to
the Domotic Effects Evaluation at startup is shown in Figure 7 as a class template.

4.2.2. DogState Bundle

The DogState bundle is responsible for providing the Domotic Effects Evaluation bundle
information about the current states of the devices connected to the Dog platform. When-
ever a device changes its state, it sends out device state change notifications containing
the name of the device and its current state.

4.2.3. Domotic Effects Evaluation Bundle

This bundle is responsible for performing the effect evaluation process, whenever a de-
vice changes its state. The logical architecture of this bundle is depicted in Figure 8. It
consists of an Organization component, a Simulator and an Effect Operator Store.

Figure 8. Logical architecture of Domotic Effects Evaluation bundle

During Dog startup, the Organization component requests and receives all the do-
motic effects defined in the instance layer for a particular environment. It parses the re-
ceived response from the HouseModel and organizes all the domotic effects in the ENN.

As defined in Section 4.1, to evaluate different types of domotic effects, proper eval-
uation algorithms (to achieve the activation criteria) for the effect operators defined in the
AmI layer are needed. The Effect Operator Store contains the Java code for each effect
operator, which provides semantics to perform the evaluation for the effect operator.

The effect evaluation process is managed by the Simulator component and comprises
receiving notifications of device state change from the DogState bundle, evaluating all
the domotic effects in the ENN and sending out notifications if changes in the values of
domotic effects are observed.

The following steps are followed:

• When a device state change notification is received, the simulator matches the
received notification to the SEs associated with the device to check their activation
criteria. If the evaluation criteria matches, it activates the SE and deactivates other
SEs associated with the device. Afterwards, all the CEs dependent on the SEs are
evaluated.

• In order to compute the value of a CE, the values of its children (SEs or CEs) are
determined and then the type of the effect operator. Once the effect operator is
determined, the appropriate Java implementation in the effect operator store takes
the values of its children and determines the value of the current CE.

• The classical Zero Delay Event Driven Logic Simulator Algorithm has been cho-
sen to perform the effect evaluation process on the ENN. The transformed al-
gorithm for our proposed approach, in pseudo-code is reported in Algorithm 1.
Basically, Algorithm 1 deals with computing new value of an effect (SE or CE)
using evaluate method. If there is a change in the value of the effect, then the
Algorithm 1 schedules the evaluation of all CEs (in next level) dependent on the
current effect. The semantics of the schedule method, in pseudo-code, is reported
in Algorithm 2. This process is repeated for the complete ENN.

• Furthermore, during the evaluation if a change in value of a domotic effect is
observed, a notification is issued with the domotic effect and its new computed
value.

Algorithm 1 Zero Delay Event Driven Logic Simulator Algorithm
for all queues as currentqueue do

for all currentqueue as node do
oldValue=(node).isValue();
newValue = (node).evaluate();→ Evaluation Criteria for the node
if oldValue NOT EQUAL newValue then

node.setValue(newValue);
node.sendNotification();
node.schedule();

end if
end for

end for

Algorithm 2 schedule method Algorithm
parents=this.getParents();
for all parents as node do

p=(node).getLevel();
queue=(queues).get(p);
if queue.contains(node) == false then

queue.add(node);
end if

end for

4.3. Extensibility

The Domotic Effects approach is extensible, and AmI designers have the ability to de-
fine new and different Boolean operators depending on the environment. Appropriate
implementation of new effect operators should be included in the Effect Operator store
in order to perform Effect Evaluation. Suppose an AmI designer wants to declare a new
Boolean effect operator called ‘NewBooleanEffectOperator’. Then, in addition to defin-
ing the new effect operator in the AmI layer of the DogEffects ontology, the AmI de-
signer must also provide a proper implementation of the new Boolean effect operator in
the Effect Operator Store. A new ‘NewBooleanEffectOperator’ class must be implemen-
tation by extending the abstract EffectNode class. The semantics for the evaluation must
be provided using the evaluate method.

When a new Boolean effect operator is defined in the AmI layer of the “DogEf-
fects” ontology, the implementation of the new effect operator can be provided inside the
Domotic Effect Evaluation bundle by two steps:

1. A new class extending the abstract EffectNode class should be implemented. The
class diagram of the EffectNode class is shown in Figure 9.

2. The EffectNode class gives the ability to access values of the children nodes and
based on them, a proper condition (implementation) for activation (true) or deac-
tivation (false) must be provided by implementing the abstract evaluate method.

EffectNode

-level: int
-value: Boolean
-nodeNumber: int
-children: Set<EffectNode>
-parents: Set<EffectNode>
-effectOperator: String

+evaluate(): Boolean
+getNodeNumber(): int
+getValue(): Boolean
+getLevel(): int
+getOperator(): String
+getChildren(): Set<EffectNode>
+addChild(EffectNode n): void
+getParents(): Set<EffectNode>
+addParent(EffectNode n): void
+setNodeNumber(int number): void
+setValue(Boolean b): void
+setLevel(int i): void
+setOperator(String opName): void

Figure 9. Template of the abstract EffectNode Class

Currently, the effect operator store includes the Complement, And, Or and Alternate
operators. The Complement, Or and And effect operators are mapped as Not, Or and
And Boolean operators, respectively.

The Alternate effect (Algorithm 3) operator represents a function which is active
when only one of its children is active.

Algorithm 3 Alternate evaluation algorithm
children=node.getChildren();
counter=0;
for all children as childNode do

if childNode.isValue() == true then
counter= counter + 1 ;
if counter > 1 then

return false;
end if

end if
end for
if counter == 1 then

return true;
else

return false;
end if

5. Experimental Study

To study the feasibility of the proposed approach and measure performance parameters
of the proposed approach, two sets of experiments were carried out. In the first set of
experiments the integration of the proposed approach inside the Dog was assessed. Con-
versely, in the second set of experiments performance parameters were measured. These
parameters include the time taken by the Domotic Effect Evaluation bundle to request,
receive and organize the domotic effects in the ENN during Dog startup and the average
time taken to completely perform the effect evaluation process.

Figure 10. Action Sequence of Feasibility Testing.

5.1. Feasibility Testing

A set of standalone applications, based on the Publisher-Subscriber pattern [2], were
developed to test the correctness of integration and to witness the overall effect evaluation
process.

After modifying the HouseModel bundle and integrating the Domotic Effects Eval-
uation bundle, in order to realize the Publisher-Subscriber pattern over the web the
LO(D)D architecture was used. LO(D)D stands for Linked Open (Dynamic) Data and
is a distributed framework that provides a systematic way to publish environment data
which is being updated continuously; such updates might be issued at specific time in-
tervals or bound to some environment specific event [10]. In our case, these events are
changes in the values of domotic effects, defined in the environment.

The architecture of the feasibility testing is shown in Figure 10. The testing was con-
ducted over a simulated environment of a house whose structure is shown in Figure 11.
The house is composed of a bed room, a living room, a lobby, a bath room, a store and
a kitchen, and is equipped with several automatic devices/appliances like lamps, oven,
television, door actuators, window actuators, shutter actuators, gas heaters etc. For each
device, a certain number of simple domotic effects have been defined in the instance layer
that correspond to the number of observable states that the device can achieve. Based on
these simple domotic effects and using the set of Boolean operators encoded in the AmI
layer, several complex domotic effects were defined.

5.1.1. Use cases

Based on the functional representation form presented in Section 2.1, this section de-
scribes six top level use cases defined over the simulated house environment, using sim-
ple and complex domotic effects. The number of total domotic effects defined to map all
six use cases were 190, and the number of involved devices were 57. To check the inte-
gration, several iterations were performed. In each iteration, the states of random number
of devices were changed and the corresponding changes in the values of domotic effects
were monitored. Table 8 summarizes the results of the interations. It defines, for each it-
eration, the number of devices whose states were changed and the corresponding number
of active and inactive domotic effects (after the change).

BathRoom

Living Room

Lobby

Kitchen

StorageRoom

Lamps

Door Actuator

Shutter Actuator

Window Actuator

Television

Gas Heater

Radios

Bed Room

Figure 11. A Sample Structure of a house.

To perform the experiment, a new LO(D)D Publisher bundle was built which reg-
isters to the Domotic Effects Evaluation bundle for receiving notifications when the
value of any domotic effect is changed. Two web applications, i.e., LO(D)D Subscriber-
Monitor and LO(D)D Subscriber-Graphical were developed, which subscribed to the
LO(D)D Publisher bundle. The former provided a command line representation, while
the latter provided a graphical representation.

A test bundle also sent commands to Dog in order to change the states of different
devices. Meanwhile, the Domotic Effects Evaluation bundle listened for any change in
state of devices installed in the environment (from the DogState bundle). As it received
the state change notification from the DogState bundle the effect evaluation process is
performed and new values of all the domotic effects are computed. During the evalua-
tion process, when it encounters a change in the value of a domotic effect, a notifica-
tion is asynchronously sent to the registered applications, i.e., in our case LO(D)D Pub-
lisher bundle. The LO(D)D Publisher bundle forwards the notifications to both LO(D)D
Subscribers.

The following use cases were defined in the experiment.

Secure Home By closing all the exit doors and shutting all the windows of the house, a
“Secure Home” use case can be achieved since all the exit points of the house are closed.

Table 2. Secure Home use case

SecureHome All = OR(SecureHome Scenario 1,SecureHome Scenario 2);
SecureHome Scenario 1 = AND(LivingRoom l2 WS CloseDown,
BathRoom WS CloseDown,Kitchen WS CloseDown,
BedRoom l1 WS North CloseDown,BedRoom WS West CloseDown,
DoorActuator d4 lobby ext Close,LivingRoom L1 WS CloseDown);
LivingRoom l2 WS CloseDown = AND(WindowActuator w6 living Close,
ShutterActuator sh2 living Down);
LivingRoom L1 WS CloseDown = AND(WindowActuator w5 living Close,
ShutterActuator sh1 living Down);
BathRoom WS CloseDown = AND(WindowActuator w3 bath Close,
ShutterActuator bath Down);
BedRoom l1 WS North CloseDown = AND(WindowActuator w1 living Close,
ShutterActuator sh1 Down);
BedRoom WS West CloseDown = AND(WindowActuator w2 Close,
ShutterActuator sh2 Down);
SecureHome Scenario 2 = AND(Secure LivingRoom,Secure BedRoom,Secure BathRoom,

Secure Lobby,Secure Kitchen);
Secure LivingRoom = AND(DoorActuator d7 kitchen Close,
DoorActuator d6 living Close,T v LivingRoom O f f ,
LivingRoom L1 WS CloseDown,LivingRoom l2 WS CloseDown);
Secure BedRoom = AND(DoorActuator d1 bed Close,BedRoom l1 WS North CloseDown,
BedRoom WS West CloseDown);
Secure BathRoom = AND(BathRoom Ws CloseDown,DoorActuator d2 bath Close);
Secure Lobby = AND(DoorActuator d6 living Close,DoorActuator d5 kitchen Close,
DoorActuator d4 lobby ext Close,DoorActuator d3 lobby stor Close,
DoorActuator d1 bed Close,DoorActuator d2 bath Close);
Secure Kitchen = AND(DoorActuator d5 kitchen Close,
DoorActuator d7 kitchen Close,Kitchen WS CloseDown);
Kitchen WS CloseDown = AND(WindowActuator w4 kitchen Close,ShutterActuator kitchen Down);

This use case comprises many DEs providing the ability to secure different rooms of the
house. This can be used in case of emergency, theft, robbery or fire etc. The functional
representation is shown in Table 2.

BathRoom Illumination The “BathRoom Illumination” combines small use cases that
illuminate the bathroom. The illumination can be artificial by switching on the mirror
lamps or ceiling lamp in different combinations, or illumination can be natural by open-
ing the shutter of the window during morning and afternoon hours. The functional rep-
resentation is given in Table 3.

Home Illumination The “Home Illumination” requires that all the rooms of the house
are illuminated. Illumination can be both natural or artificial in nature. The functional
representation is shown Table 4.

Afternoon Lunch In the afternoon, the resident desires to cook food and therefore, the
kitchen’s oven to be heated, the television to be switched on and the kitchen to be closed
so that the aroma of cooking does not spread to other rooms of the house. This scenario
represents “Afternoon Lunch” use case. The functional representation is given in Table
5.

Table 3. Bathroom Illumination functional form

Illumination = Or(Arti f icialIllumination,NaturalIllumination)
Arti f icialIllumination = Alternate(CeilingLampIllumination,MirrorLampIllumination)
MirrorLampIllumination = And(Le f tMirrorLampIllumination,RightMirrorLampIllumination)
RightMirrorLampIllumination = SE(l9,OnState lamp9)
Le f tMirrorLampIllumination = SE(l8,OnState lamp8)
CeilingLampIllumination = SE(l2,OnState lamp2)
NaturalIllumination = SE(ShutterBath,U pStateValue ShutterBath)

Table 4. Home Illumination use case

Home Illumination = OR(Natural Illumination Home,Arti f icial Illumination Home);
Natural Illumination Home = AND(BedRoom Natural Illumination,
DoorActuator d7 kitchen Open,DoorActuator d6 living Open,BathRoom WS CloseU p,
DoorActuator d5 kitchen Open,DoorActuator d1 bed Open,
LivingRoom Natural Illumination,Kitchen WS CloseU p);
BedRoom Natural Illumination = AND(BedRoom WS West Closeup,BedRoom l1 WS North CloseU p);
BedRoom l1 WS North CloseU p = AND(WindowActuator w1 living Close,ShutterActuator sh1 U p);
BedRoom WS West CloseU p = AND(WindowActuator w2 Close,ShutterActuator sh2 U p);
LivingRoom Natural Illumination = OR(LivingRoom l1 WS CloseU p,LivingRoom l2 WS CloseU p);
LivingRoom l1 WS CloseU p = AND(WindowActuator w5 living Close,ShutterActuator sh1 living U p);
LivingRoom l2 WS CloseU p = AND(WindowActuator w6 living Close,ShutterActuator sh2 living U p);
Arti f icial Illumination Home = AND(Lobby Illumination,Lamp6 Kitchen On,
arti f iciallyIlluminatedBath,Lamp1 BedRoom On,Lamp7 LivingRoom On);
Lobby Illumination = OR(Lobby Illumination All,Lobby Illumination Alternate);
Lobby Illumination Alternate = ALTERNATE(Lamp4 Lobby On,Lamp5 Lobby On);
Lobby Illumination All = AND(Lamp4 Lobby On,Lamp5 Lobby On);
arti f icialIllumination = ALTERNATE(celingLamp On,MirrorLampsOn);
MirrorLampsOn = AND(Lamp9 On,Lamp8 On);

Table 5. Afternoon Lunch Cooking use case

A f ternoon Lunch = AND(Oven Kitchen On,T v Kitchen On,Kitchen CookingDay Scenario Alt);
Kitchen CookingDay Scenario Alt = ALTERNATE(Kitchen CookingDay Scenario 1,
Kitchen CookingDay Scenario 2);
Kitchen CookingDay Scenario 1 = AND(ExhaustFan On,DoorActuator5 Close,DoorActuator7 Close,
Lamp6 O f f ,Kitchen WS Day Scenario);
Kitchen WS Day Scenario = ALTERNATE(Kitchen WS CloseU p,Kitchen WS OpenDown);
Kitchen WS CloseU p = AND(WindowActuator Kitchen Close,Shutter Kitchen U p);
Kitchen WS OpenDown = AND(WindowActuator Kitchen Open,Shutter Kitchen Down);
Kitchen CookingDay Scenario 2 = AND(ExhaustFan On,DoorActuator5 Close,DoorActuator7 Close,
Lamp6 On,Kitchen WS CloseDown);
Kitchen WS CloseU p = AND(WindowActuator Kitchen Close,Shutter Kitchen Down);

Air Passage inside the house The opening of windows at the opposite sides of the
house, enable the flow of air between different rooms of the house. Hence, it represents
the “Air Passage” use case. The functional representation is shown in Table 6.

Table 6. Air Passage use case

AirPassage All = AND(AirPassage LRBR Scenario 1,AirPassage LRBR Scenario 2,
AirPassage LRKT Scenario 1,Door Kitchen d5 Open);
AirPassage LRBR Scenario 1 = AND(LivingRoom Windows Open Any,
DoorActuator d6 living Open,DoorActuator d1 Bed Open,BedRoom l1 WS North OpenU p);
LivingRoom Windows Open Any = OR(LivingRoom Windows Open Alternate,
LivingRoom Windows Open);
LivingRoom Windows Open Alternate = ALTERNATE(LivingRoom Windows North Open,
LivingRoom Windows South Open);
LivingRoom Windows South Open = NOT(LivingRoom Windows North Open);
LivingRoom Windows North Open = AND(LivingRoom l1 WS OpenU p,LivingRoom l2 WS CloseDown);
LivingRoom l1 WS OpenU p = AND(WindowActuator w5 living Open,ShutterActuator sh1 living U p);
LivingRoom l2 WS CloseDown = AND(WindowActuator w6 living Close,ShutterActuator sh2 living Down);
LivingRoom Windows Open = AND(LivingRoom l2 WS OpenU p,LivingRoom l1 WS OpenU p);
LivingRoom l2 WS OpenU p = AND(WindowActuator w6 living Open,ShutterActuator sh2 living U p);
LivingRoom l1 WS OpenU p = AND(WindowActuator w5 living Open,ShutterActuator sh1 living U p);
BedRoom l1 WS North OpenU p = AND(WindowActuator w1 living Open,ShutterActuator sh1 U p);
AirPassage LRBR Scenario 2 = AND(DoorActuator d1 bed Open,LivingRoom Windows Open Any,
DoorActuator d6 living open,BedRoom WS West OpenU p);
BedRoom WS West OpenU p = AND(WindowActuator w2 Open,ShutterActuator sh2 U p);
AirPassage LRKT Scenario 1 = AND(LivingRoom Windows Open Any,Kitchen WS OpenU p,
DoorActuator d7 kitchen Open,ExhaustFan Kitchen On);
Kitchen WS OpenU p = AND(WindowActuator w4 kitchen Open,ShutterActuator kiitchen U p);

Table 7. Morning Wake Up use case

Morning WakeU p = AND(BathRoomIllumination,Radio BathRoom On,T v Kitchen On,
BedRoom Natural Illumination,Kitchen Cooking Day Scenario 1,GasHeater BedRoom On);
BathRoomIllumination = OR(arti f icialIllumination,ShuterBathU p);
arti f icialIllumination = ALTERNATE(celingLamp On,MirrorLampsOn);
MirrorLampsOn = AND(Lamp9 On,Lamp8 On);
Kitchen CookingDay Scenario 1 = AND(ExhaustFan On,DoorActuator5 Close,DoorActuator7 Close,
Lamp6 O f f ,Kitchen WS Day Scenario);
Kitchen WS Day Scenario = ALTERNATE(Kitchen WS CloseU p,Kitchen WS OpenDown);
Kitchen WS CloseU p = AND(WindowActuator Kitchen Close,Shutter Kitchen U p);
Kitchen WS OpenDown = AND(WindowActuator Kitchen Open,Shutter Kitchen Down);
BedRoom Natural Illumination = AND(BedRoom WS West CloseU p,BedRoom L1 WS North CloseU p);
BedRoom WS West CloseU p = AND(WindowActuator w2 Close,ShutterActuator sh2 U p);
BedRoom L1 WS North CloseU p = AND(WindowActuator w1 Close,ShutterActuator sh1 U p);

Morning WakeUp Activities performed by the resident of the house after waking up in
the morning map to the “Morning WakeUp” use case. The activities can be illuminating
the bedroom, the kitchen and the bathroom, switching off the gas heater inside the bed-
room, switching on the television in the kitchen and the radio inside the bathroom. The
functional representation is shown in Table 7.

5.1.2. Comments

Table 8 depicts the summary of the number of active and inactive effects when the states
of devices were changed randomly, over the aforementioned use cases. The no. of De-
vices changed column shows the number of devices for which the states were randomly
changed. The resulting number of active effects and inactive effects are shown in columns
No. of Active Effects and No. of InActive Effects, respectively. The changes in the states
of the devices (coming from DogState bundle) were detected and propagated in the ENN
to perform the Effect Evaluation process. It can be observed from Table 8 that the total
number of domotic effects remains equal to 190, along with providing monitoring the
environment with the help of active and inactive domotic effects.

Table 8. Results of the feasibility testing

No. of Devices changed No. of Active Effects No. of Inactive Effects

2 3 187
4 7 183
5 6 184
2 3 187
7 14 176
2 4 186
1 2 188
3 3 187

5.2. Performance Evaluation

To measure the performance parameters of the implemented Domotic Effects Evaluation
and the modified HouseModel bundles, two experiments were conducted. For the experi-
ments a house environment with 57 devices was simulated, whose domotic structure was
defined using the DogOnt ontology. The experiments ran on a standard personal com-
puter with a quad-core Intel i5 processor and 4GB of RAM. A TestDogEffect bundle was
created to carry out the experiments and measure the performance parameters.

5.2.1. Experiment 1: Daily Chores Scenario

This experiment simulated a scenario that encapsulates daily chores occurring in a house.
12 test iterations were created with a different number of total domotic effects defined
over the house. The number of simple and complex domotic effects were generated ran-
domly in a range from 100 to 1500. The type of the effect operator between complex do-
motic effects, the number of children and parent, and the inter-dependency of all the do-
motic effects (level) among themselves were generated randomly. To measure the perfor-
mance parameters, the TestDogEffect bundle randomly chose devices and changed their
respective states. For each iteration, the process of changing device states was repeated
at least 150 times and then the evaluation time was averaged for each iteration.

As defined in Section 4.1 the classical Zero Delay Event Driven Logic Simulation
performs the effect evaluation process. The semantics of the simulation is such that if a
device changes its state, the values of all the domotic effects dependent on that partic-
ular device may need to be recomputed and the values of other domotic effects remain

Figure 12. Semantics of Effect Evaluation process in Experiment 1.

unchanged. The semantics of the effect evaluation process in daily chores scenario is il-
lustrated in Figure 12. If a device “D” (dark colored) changes its state, then the values of
only domotic effects (SEs and CEs) dependent on the device “D” needs to be recomputed
(depicted as dark colored).

The obtained performance parameters of this experiment are depicted in Table 9.
The performance parameters include the total number of domotic effects (Total Domotic
Effects column), the number of CEs (Complex Effects column), the time taken by the
HouseModel bundle to extract domotic effects information from the ontologies (called
Effect Extraction time), the time taken by the organization component to create the ENN
(called Organization time), the maximum level of the ENN (Maximum Level (ENN) col-
umn) and the average time taken to perform the effect evaluation process in each iter-
ation (called Average Evaluation Time). All the time measurements were taken in mil-
liseconds. The effect extraction time includes loading the ontologies (DogOnt and Do-
gEffects), checking consistency and performing realization. The organization time rep-
resents receiving all the domotic effects and organizing them in the ENN. Both effect
extraction and organization time are measured by Dog, during the startup phase and they
happen only once. The maximum level represents the height of the ENN. For example,
the ENN depicted in Figure 6 has the height equal to two. The average evaluation time
represents evaluating all the domotic effects and sending out notifications.

From the results in the Table 9, it can be observed that once the ENN is constructed,
the Effect Evaluation process computes the new values of the domotic effects in real time
(see Average Evaluation Time column). The tasks of effect extraction and organization in
the ENN take longer time periods and therefore, these tasks are performed at the startup
of Dog.

The linear relationship between the total number of domotic effects (x-axis) and the
average time taken to perform the effect evaluation (y-axis) for all iterations is shown in
Figure 13. On the other hand, Figure 14 shows the relationship between the maximum
level of the ENN (x-axis) and the average time taken to perform the effect evaluation
(y-axis) for all iterations.

Table 9. Daily chores scenario performance parameters

Total
Domotic
Effects

Complex
Effects

Effect Extraction
Time

Organization
Time

Maximum
Level
(ENN)

Average
Evaluation
Time (ms)

209 100 22506 182 18 5
309 200 44929 289 21 7
409 300 22107 363 37 11
459 350 30400 482 57 15
599 490 24170 662 65 24
709 600 36596 819 122 43
809 700 28261 887 129 33
909 800 33815 1017 120 30
1069 960 45106 1143 105 27
1159 1050 49721 1280 232 108
1309 1200 70404 1450 122 52
1609 1500 67311 1994 177 118

Figure 13. Daily chores scenario: Linear relationship between Total Number of Domotic Effects (x-axis) and
Average Evaluation Time (y-axis)

5.2.2. Experiment 2: Maximal Propagation Scenario

This experiment was an attempt to simulate a scenario in which a change in state of a
single device will initiate the recomputation of values for a significant number of nodes
in the ENN. The complex domotic effects were generated randomly by taking SEs (or
parent CEs) of a single device (identified by ‘UD’) in combination with other operands,
pointing at other random devices. Therefore, when the ‘UD’ will change state the values
of all the complex domotic effects might need to be evaluated. The semantics of the effect
evaluation process in this designed experiment is illustrated in Figure 15. The crux is that
when the device ‘UD’ changes its state, the values of all the domotic effects in the ENN
may need to be recomputed.

10 iterations were performed with a random number of complex domotic effects
generated, the type of the effect operator between complex domotic effects, the number
of children and parent and the inter-dependency of all the domotic effects (level) were
generated randomly.

Figure 14. Daily chores scenario: Linear relationship between Maximum level of the ENN (x-axis) and Aver-
age Evaluation Time (y-axis)

Figure 15. Semantics of Effect Evaluation process in Experiment 2.

For each iteration, the state of the unique device was changed. After that, the states
of other randomly chosen devices in the house were changed and then again the state
of the unique device was changed. This process was repeated at least 20 times for each
iteration and in the end, the time taken to perform the evaluation process was averaged.
The performance parameters of this experiment are depicted in Table 10. The perfor-
mance parameters include the total number of CEs (Complex Effects column), the max-
imum level of the ENN (Maximum Level (ENN) column) and the average time to per-
form the effect evaluation process (Average Evaluation Time). The time is represented in
milliseconds (ms).

The linear relationship between the total number of CEs (x-axis) and the average
time taken to perform the effect evaluation process (y-axis) for all the iterations is shown
in Figure 16.

Table 10. Maximal Propagation Scenario Statistics

Complex Effects Maximum Level (ENN) Average Evaluation Time

100 38 21
200 124 18
300 117 59
400 178 41
500 270 55
600 100 144
800 265 176

1000 314 148
1200 201 313
1400 272 258

Figure 16. Maximal Propagation Scenario: Linear relationship between Total Number of CEs (x-axis) and
Average Evaluation Time (y-axis)

5.3. Discussion

The developed set of applications presented in Section 5.1 proves that the “Domotic Ef-
fects” based approach can be integrated inside smart environment systems and is rela-
tively flexible and easy to integrate with third party applications and services. Different
monitoring applications (both web and desktop based) can be developed to monitor the
state of the overall environment using the “Domotic Effects” approach.

The observations regarding the measured performance parameters during experi-
ments (presented in Section 5.2) are pointed below.

1. For the daily chores scenario (Table 9), the effect evaluation process takes a max-
imum of around 118 milliseconds to complete the effect evaluation process and
send out notifications, in case of 1609 domotic effects. It can be seen that the
“Domotic Effects Evaluation” bundle is quite responsive and responds in near
real-time. In most of the cases the time for evaluation and sending out notification
was less than 150 ms. In fact, the number of domotic effects needed for average
homes and small buildings will be in hundreds and only for large industries the
number of domotic effects will exceed to thousands.

Figure 17. Comparison of Average Evaluation Time, Level of the ENN and the Total Number of DEs (for
daily chores scenario).

2. As mentioned before, in the maximal propagation scenario all complex domotic
effects are dependent directly or indirectly on a single unique device. Table 10
shows that the effect evaluation process takes an average of around 313 millisec-
onds to complete the effect evaluation process and send out notifications. Consid-
ering a unique device “UD” having 1000 domotic effects in a house means that a
house with 57 devices can have thousands of domotic effects. Even in such rare
occurrence (for large buildings), the average evaluation time is less than a second
and takes on average 312.86 ms for 1200 CEs to be evaluated and therefore, the
experiments indicates the responsiveness of the approach.

3. Both Figure 13 and Figure 16 indicate that the average time taken to perform
the effect evaluation process is linearly increasing with respect to the number of
domotic effects defined in an environment. However, this increase is not radical
and it can be observed in Figure 16 that even if the number of domotic effects are
in thousands, the effect evaluation time will be less than 1 second.

4. Figure 14 shows the linear relationship between the average effect evaluation
time and the maximum level of the ENN (for the daily chores scenario). However,
again it can be observed that this linear increase is not radical and even if the
maximum level of the ENN is large, the effect evaluation process can be safely
completed in near real-time.

5. Since the time taken to perform the effect evaluation process is less than 1 second
(as proved from the results of experiments), it can be safely assumed that the
proposed approach can easily be deployed in smart environments to monitor the
overall state of the environment in near real-time.

6. Figure 17 shows the comparison between the total number of domotic effects
(top), the average effect evaluation time (middle) and the maximum level of the
ENN (bottom) for the daily chores scenario. A very interesting pattern can be
observed. Though the average effect evaluation time is linearly increasing with
respect to both total number of domotic effects and the maximum level of the
ENN, the time curve is more correlated with respect to the maximum level of the
ENN. It points to the event driven characteristic of the Zero Delay Simulation
Algorithm.

6. Conclusion

This paper presented a high level approach, based on the concept of Domotic Effects, for
monitoring and interpreting complex smart environments. The Domotic Effects frame-
work, based on the DogEffects ontology, is general and extensible, and is easy to cus-
tomize to specific application requirements. In particular, this paper focuses on monitor-
ing applications, where high level effects may be described resorting to Boolean expres-
sions operating on device states.

The paper presented extensive examples of Simple and Complex Effects over a sam-
ple home environment, and shows experimental results that prove that the complete state
of the environment can be monitored using the Domotic Effects with a latency under
150 ms.

References

[1] S. Bader and M. Dyrba, Goalaviour-based control of heterogeneous and distributed smart environments,
in: 7th International Conference on Intelligent Environments, 2011, pp. 142–148.

[2] K. Birman and T. Joseph, Exploiting virtual synchrony in distributed systems, in: Proceedings of the
eleventh ACM Symposium on Operating systems principles, ACM, 1987, pp. 123–138.

[3] D. Bonino, E. Castellina, and F. Corno, Dog: An ontology-powered osgi domotic gateway, in: 20th IEEE
International Conference on Tools with Artificial Intelligence, IEEE, 2008, volume 1, pp. 157–160.

[4] D. Bonino and F. Corno, Dogont - ontology modeling for intelligent domotic environments, in: Amit
Sheth, Steffen Staab, Mike Dean, Massimo Paolucci, Diana Maynard, Timothy Finin, and Krishnaprasad
Thirunarayan, editors, The Semantic Web - ISWC 2008, volume 5318 of Lecture Notes in Computer
Science, Springer Berlin/Heidelberg, 2008, pp. 790–803.

[5] M.A. Breuer and A.D. Friedman, Diagnosis and Reliable Design of Digital Systems, . Computer Science
Press, 1976.

[6] D. Chen, J. Yang, and H.D. Wactlar, Towards automatic analysis of social interaction patterns in a
nursing home environment from video, in: Proceedings of the 6th ACM SIGMM international workshop
on Multimedia information retrieval, ACM, 2004, pp. 283–290.

[7] L. Chen, J. Hoey, C. D. Nugent, D. J. Cook, and Z. Yu, Sensor-based activity recognition. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 42(6):790 –808,
nov. 2012.

[8] S.T. Cheng, C.H. Wang, and C.C. Chen, An adaptive scenario based reasoning system cross smart
houses, in: 9th International Symposium on Communications and Information Technology , IEEE, 2009,
pp. 549–554.

[9] F. Corno and F. Razzak, Intelligent energy optimization for user intelligible goals in smart home envi-
ronments. IEEE Transactions on Smart Grid, 3(4):2128–2135, 2012.

[10] F. Corno and F. Razzak, Publishing LO(D)D: Linked Open (Dynamic) Data for Smart Sensing and
Measuring Environments. Procedia Computer Science, 10:381–388, 2012.

[11] S. Davidoff, M. Lee, C. Yiu, J. Zimmerman, and A. Dey, Principles of smart home control, in: UbiComp
2006: Ubiquitous Computing, 2006, pp. 19–34.

[12] E. Aarts and B. de Ruyter, New research perspectives on Ambient Intelligence. Journal of Ambient
Intelligence and Smart Environments, 1(1):5-14, 2009.

[13] A.K. Dey, G.D. Abowd, and D. Salber, A context-based infrastructure for smart environments, in: 1st
International Workshop on Managing Interaction in Smart Environments, Springer, 1999, pp. 114–128.

[14] H. Dibowski, J. Ploennigs, and K. Kabitzsch, Automated design of building automation systems. IEEE
Transactions on Industrial Electronics, 57(11):3606–3613, 2010.

[15] M. Doorn, A. Vries, and E. Aarts, End-user software engineering of smart retail environments: The
intelligent shop window, in: Proceedings of the European Conference on Ambient Intelligence, Springer-
Verlag, 2008, pp. 157–174. .

[16] K. Ducatel, M. Bogdanowicz, F. Scapolo, J. Leijten, and JC Burgelman, Ambient intelligence: From
vision to reality. IST Advisory Group Draft Rep., Eur. Comm, 2003.

[17] J.L. Encarnaçao and T. Kirste, Towards smart appliance ensembles, in: Matthias Hemmje, Claudia
Niederée, Thomas Risse, editors, From Integrated Publication and Information Systems to Information
and Knowledge Environments, volume 3379 of Lecture Notes in Computer Science, Springer Berlin/Hei-
delberg, 2005, pp. 261–270.

[18] M. Garcia-Herranz, P. Haya, and X. Alaman, Towards a ubiquitous end-user programming system for
smart spaces. Journal of Universal Computer Science, 16(12):1633–1649, 2010.

[19] A. Esposito, L. Tarricone, and M. Zappatore, A versatile context-aware pervasive monitoring system:
Validation and characterization in the health-care domain, in: 2010 IEEE International Symposium on
Industrial Electronics (ISIE), 2010, pp. 2791–2796.

[20] T. Heider and T. Kirste, Supporting goal-based interaction with dynamic intelligent environments, in:
Proceedings of the 15th European Conference on Artificial Intelligence, 2002, pp. 596–602.

[21] F. Kawsar, T. Nakajima, and K. Fujinami, Deploy spontaneously: supporting end-users in building and
enhancing a smart home, in: Proceedings of the 10th international conference on Ubiquitous computing,
ACM, 2008, pp. 282–291.

[22] A. Katasonov, Enabling non-programmers to develop smart environment applications, in: IEEE Sym-
posium on Computers and Communications, IEEE, 2010, pages 1059–1064.

[23] Hyo nam Lee, Sung-Hwa Lim, and Jai-Hoon Kim, UMONS: Ubiquitous monitoring system in smart
space. IEEE Transactions on Consumer Electronics, 55(3):1056–1064, 2009.

[24] P. Rashidi and D.J. Cook, Keeping the resident in the loop: Adapting the smart home to the user. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 39(5):949–959, 2009.

[25] F. Razzak, The Role of Semantic Web Technologies in Smart Environments, PhD dissertation, Politecnico
di Torino, 2013. http://porto.polito.it/id/eprint/2506366

[26] J. Chin, V. Callaghan and G. Clarke, Soft-appliances: A vision for user created networked appliances in
digital homes. Journal of Ambient Intelligence and Smart Environments, 1(1): 69-75, 2009.

[27] E. Salomons, W. Teeuw, H. van Leeuwen, and P. Havinga, Persona-based adaptation in a smart green
home, in: 8th International Conference on Intelligent Environments, IEEE, 2012, pp. 355–358.

[28] R. Velik and H. Boley, Neurosymbolic alerting rules. IEEE Transactions on Industrial Electronics,
57(11):3661–3668, 2010.

[29] R. Velik and G. Zucker, Autonomous perception and decision making in building automation. IEEE
Transactions on Industrial Electronics, 57(11):3645–3652, 2010.

[30] R. Velik, G. Zucker, and D. Dietrich, Towards automation 2.0: a neurocognitive model for environment
recognition, decision-making, and action execution. EURASIP Journal on Embedded Systems, 2011:4,
2011.

[31] W3C, OWL : Ontology Web Language. Technical report, W3C, 2004.
[32] J. Ye, G. Stevenson, and S. Dobson, A top-level ontology for smart environments. Pervasive and Mobile

Computing, 7(3):359–378, 2011.

