We consider a linear boundary or point control system on a Hilbert space $H$ which is null controllable at some time $T_0 >0$. To every initial state $ y_0 \in H$ we associate the minimal ``energy'' needed to transfer $ y_0 $ to $ 0 $ in a time $ T \ge T_0$ (``energy'' of a control being the square of its $ L^2 $ norm). Clearly, it decreases with the control time $ T $. We shall prove that, under suitable spectral properties of the linear system operator, the minimal energy converges to $ 0 $ for $ T\to+\infty $.
Linear Operator Inequality and Null Controllability with Vanishing Energy for Unbounded Control Systems / Pandolfi, Luciano; Priola, E.; Zabczyk, J.. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - STAMPA. - 51:1(2013), pp. 629-659. [10.1137/110846294 .]
Linear Operator Inequality and Null Controllability with Vanishing Energy for Unbounded Control Systems
PANDOLFI, LUCIANO;
2013
Abstract
We consider a linear boundary or point control system on a Hilbert space $H$ which is null controllable at some time $T_0 >0$. To every initial state $ y_0 \in H$ we associate the minimal ``energy'' needed to transfer $ y_0 $ to $ 0 $ in a time $ T \ge T_0$ (``energy'' of a control being the square of its $ L^2 $ norm). Clearly, it decreases with the control time $ T $. We shall prove that, under suitable spectral properties of the linear system operator, the minimal energy converges to $ 0 $ for $ T\to+\infty $.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											PPZ-NCVE.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											2. Post-print / Author's Accepted Manuscript
										 
									
									
									
									
										
											Licenza:
											
											
												Pubblico - Tutti i diritti riservati
												
												
												
											
										 
									
									
										Dimensione
										412.02 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								412.02 kB | Adobe PDF | Visualizza/Apri | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2506476
			
		
	
	
	
			      	Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
