We consider a linear boundary or point control system on a Hilbert space $H$ which is null controllable at some time $T_0 >0$. To every initial state $ y_0 \in H$ we associate the minimal ``energy'' needed to transfer $ y_0 $ to $ 0 $ in a time $ T \ge T_0$ (``energy'' of a control being the square of its $ L^2 $ norm). Clearly, it decreases with the control time $ T $. We shall prove that, under suitable spectral properties of the linear system operator, the minimal energy converges to $ 0 $ for $ T\to+\infty $.

Linear Operator Inequality and Null Controllability with Vanishing Energy for Unbounded Control Systems / Pandolfi, Luciano; Priola, E.; Zabczyk, J.. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - STAMPA. - 51:1(2013), pp. 629-659. [10.1137/110846294 .]

Linear Operator Inequality and Null Controllability with Vanishing Energy for Unbounded Control Systems

PANDOLFI, LUCIANO;
2013

Abstract

We consider a linear boundary or point control system on a Hilbert space $H$ which is null controllable at some time $T_0 >0$. To every initial state $ y_0 \in H$ we associate the minimal ``energy'' needed to transfer $ y_0 $ to $ 0 $ in a time $ T \ge T_0$ (``energy'' of a control being the square of its $ L^2 $ norm). Clearly, it decreases with the control time $ T $. We shall prove that, under suitable spectral properties of the linear system operator, the minimal energy converges to $ 0 $ for $ T\to+\infty $.
File in questo prodotto:
File Dimensione Formato  
PPZ-NCVE.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 412.02 kB
Formato Adobe PDF
412.02 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2506476
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo