In this work, we present a Computer Aided Diagnosis (CAD) based technique for automatic classification of benign and malignant thyroid lesions in 3D contrast-enhanced ultrasound images. The images were obtained from 20 patients. Fine needle aspiration biopsy and histology confirmed malignancy. Discrete Wavelet Transform (DWT) and texture based features were extracted from the thyroid images. The resulting feature vectors were used to train and test three different classifiers: K-Nearest Neighbor (K-NN), Probabilistic Neural Network (PNN), and Decision Tree (DeTr) using tenfold cross validation technique. Our results show that combination of DWT and texture features in the K-NN classifier resulted in a classification accuracy of 98.9%, a sensitivity of 98%, and a specificity of 99.8%. Thus, the preliminary results of the proposed technique show that it could be adapted as an adjunct tool that can give valuable second opinions to the doctors regarding the nature of the thyroid nodule. The technique is cost-effective, non-invasive, fast, completely automated and gives more objective and reproducible results compared to manual analysis of the ultrasound images. We however intend to establish the clinical applicability of this technique by evaluating it with more data in the future.

Automated benign & malignant thyroid lesion characterization and classification in 3D contrast-enhanced ultrasound / Acharya, Ur; S., Vs; Molinari, Filippo; Garberoglio, R; Witkowska, A; Suri, Js. - ELETTRONICO. - 2012:(2012), pp. 452-455. (Intervento presentato al convegno Engineering in Medicine and Biology Conference tenutosi a San Diego nel 28 Aug - 1 Sep) [10.1109/EMBC.2012.6345965].

Automated benign & malignant thyroid lesion characterization and classification in 3D contrast-enhanced ultrasound.

MOLINARI, FILIPPO;
2012

Abstract

In this work, we present a Computer Aided Diagnosis (CAD) based technique for automatic classification of benign and malignant thyroid lesions in 3D contrast-enhanced ultrasound images. The images were obtained from 20 patients. Fine needle aspiration biopsy and histology confirmed malignancy. Discrete Wavelet Transform (DWT) and texture based features were extracted from the thyroid images. The resulting feature vectors were used to train and test three different classifiers: K-Nearest Neighbor (K-NN), Probabilistic Neural Network (PNN), and Decision Tree (DeTr) using tenfold cross validation technique. Our results show that combination of DWT and texture features in the K-NN classifier resulted in a classification accuracy of 98.9%, a sensitivity of 98%, and a specificity of 99.8%. Thus, the preliminary results of the proposed technique show that it could be adapted as an adjunct tool that can give valuable second opinions to the doctors regarding the nature of the thyroid nodule. The technique is cost-effective, non-invasive, fast, completely automated and gives more objective and reproducible results compared to manual analysis of the ultrasound images. We however intend to establish the clinical applicability of this technique by evaluating it with more data in the future.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2506329
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo