The aim of secondary packaging plants is to pick food products from a conveyor belt and to place them into boxes. The typical configuration of these packaging plants consists of a set of sequential robot stations, performing pick and place cycles from one conveyor to another parallel one, which transport the products and the boxes to be filled. Depending on the relative movement of the two conveyors, the plant operates in co-current or counter-current flow configuration. Undesired perturbations in the product flow rate from its nominal value can lead to critical events, i.e. unpicked product at the end of the first conveyor or not-completely filled boxes. Even if the structures of co-current flow and of counter-current flow plants, are very similar, their behaviour in non-nominal or perturbed conditions can be significantly different. The aim of this paper is to deeply investigate the behaviour of these two kinds of secondary packaging lines, evaluating their performances in the case of different pick and place strategies, using discrete events simulation techniques. Results show to which extent the different proposed control strategies can improve the performances of both co-current and counter-currents plants and, in particular, how co-current plant layouts can achieve performances which are equivalent to, or perhaps even better than, those that can be obtained with a counter-current plant layout, that cannot be freely used since it has been patented. The simulation tool, control algorithms and results presented can help packaging plant designers for choosing the most appropriate solutions and for properly sizing the plant. Copyright © 2012 John Wiley & Sons, Ltd.

Plant layout and pick-and-place strategies for improving performances in secondary packaging plants of food products / Comba, L.; Belforte, Gustavo; Gay, Paolo. - In: PACKAGING TECHNOLOGY AND SCIENCE. - ISSN 0894-3214. - STAMPA. - 26:6(2013), pp. 339-354. [10.1002/pts.1984]

Plant layout and pick-and-place strategies for improving performances in secondary packaging plants of food products

Comba L.;BELFORTE, GUSTAVO;
2013

Abstract

The aim of secondary packaging plants is to pick food products from a conveyor belt and to place them into boxes. The typical configuration of these packaging plants consists of a set of sequential robot stations, performing pick and place cycles from one conveyor to another parallel one, which transport the products and the boxes to be filled. Depending on the relative movement of the two conveyors, the plant operates in co-current or counter-current flow configuration. Undesired perturbations in the product flow rate from its nominal value can lead to critical events, i.e. unpicked product at the end of the first conveyor or not-completely filled boxes. Even if the structures of co-current flow and of counter-current flow plants, are very similar, their behaviour in non-nominal or perturbed conditions can be significantly different. The aim of this paper is to deeply investigate the behaviour of these two kinds of secondary packaging lines, evaluating their performances in the case of different pick and place strategies, using discrete events simulation techniques. Results show to which extent the different proposed control strategies can improve the performances of both co-current and counter-currents plants and, in particular, how co-current plant layouts can achieve performances which are equivalent to, or perhaps even better than, those that can be obtained with a counter-current plant layout, that cannot be freely used since it has been patented. The simulation tool, control algorithms and results presented can help packaging plant designers for choosing the most appropriate solutions and for properly sizing the plant. Copyright © 2012 John Wiley & Sons, Ltd.
File in questo prodotto:
File Dimensione Formato  
Belforte_121_J-44.pdf

accesso aperto

Tipologia: 1. Preprint / submitted version [pre- review]
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2505134
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo