The paper describes a preliminary study on the urban classification accuracies obtained by means of the Decision Tree classifier. The study was conducted over the area of Turin (Italy), with Landsat ETM+ imagery and with an official regional map (Cartografia Tecnica Regionale) used as ground truth. In particular the variation of the accuracies was evaluated, depending on the changing of the algorithm input attributes such as the level of applied radiometric pre-processing, the considered number of classes, the temporal extent of the training set and the use of spectral indexes. Results show that overall accuracies of 80% can be achieved and that spectral indexes are the type of attribute that affect most these accuracies.

Utilizzo di Alberi Decisionali per la classificazione di aree urbanizzate / Steffenino, Sara; Angeluccetti, Irene; Disabato, Franca. - ELETTRONICO. - (2012), pp. 1249-1256. ((Intervento presentato al convegno Asita 2012 tenutosi a Vicenza (Italy) nel 6-9 Novembre 2012.

Utilizzo di Alberi Decisionali per la classificazione di aree urbanizzate

STEFFENINO, SARA;ANGELUCCETTI, IRENE;DISABATO, FRANCA
2012

Abstract

The paper describes a preliminary study on the urban classification accuracies obtained by means of the Decision Tree classifier. The study was conducted over the area of Turin (Italy), with Landsat ETM+ imagery and with an official regional map (Cartografia Tecnica Regionale) used as ground truth. In particular the variation of the accuracies was evaluated, depending on the changing of the algorithm input attributes such as the level of applied radiometric pre-processing, the considered number of classes, the temporal extent of the training set and the use of spectral indexes. Results show that overall accuracies of 80% can be achieved and that spectral indexes are the type of attribute that affect most these accuracies.
File in questo prodotto:
File Dimensione Formato  
193.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2503693
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo