Transparent façades are often used to increase the aesthetic value of the building and to provide visual contact with the outdoor. However, together with several positive features, it should be mentioned that glass façades may reduce the quality of the indoor thermal environment, causing thermal discomfort especially due to overheating in the summer season. The aim of this paper is to compare the implications on thermal comfort of different glazed façades, whose surface temperatures have been monitored during several experimental campaigns. The analyzed glazing systems were double skin façades and non conventional single skin façades integrating different materials (i.e. phase change material, areogel). Starting from the measured internal surface temperatures, a fictitious office room was simulated in order to assess the thermal comfort performance through the calculation of the PMV index. Results show that the choice of the glazing system can strongly affect the thermal comfort of an office.
Impact on thermal comfort of conventional and advanced glazed façades in office buildings / Bianco, Lorenza; Goia, Francesco; Serra, Valentina. - ELETTRONICO. - (2012), pp. 355-362. (Intervento presentato al convegno Conference on Building Energy and Environment COBEE 2012 tenutosi a Boulder, Colorado, USA nel 1-4 agosto 2012).
Impact on thermal comfort of conventional and advanced glazed façades in office buildings
BIANCO, LORENZA;GOIA, FRANCESCO;SERRA, VALENTINA
2012
Abstract
Transparent façades are often used to increase the aesthetic value of the building and to provide visual contact with the outdoor. However, together with several positive features, it should be mentioned that glass façades may reduce the quality of the indoor thermal environment, causing thermal discomfort especially due to overheating in the summer season. The aim of this paper is to compare the implications on thermal comfort of different glazed façades, whose surface temperatures have been monitored during several experimental campaigns. The analyzed glazing systems were double skin façades and non conventional single skin façades integrating different materials (i.e. phase change material, areogel). Starting from the measured internal surface temperatures, a fictitious office room was simulated in order to assess the thermal comfort performance through the calculation of the PMV index. Results show that the choice of the glazing system can strongly affect the thermal comfort of an office.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2503465
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo