Numerical simulations are now an actual option in order to try to reproduce and understand the mechanical response in components subjected to extreme loading conditions, like in a ballistic impact. A correct materials calibration is therefore necessary in order to extract the materials parameters. In this work the simple and widely used Johnson-Cook model was used to analyse the experimental data obtained for the characterization of the bullet materials. The bullet under investigation is a full metal jacket ball, with a lead-antimony alloy core and a brass jacket. The experimental tests cover a wide range in strain-rate, starting from quasi-static tests up to high dynamic tests performed on a standard Split Hopkinson Pressure Bar setup. In general, there is a great lack in strain-rate sensitivity and failure data. Pure lead is very soft and ductile, so antimony is used to give greater hardness and strength. The results of this study show a significant strain-rate influence for this alloy that can be associated with the presence of the lead-antimony phases and their structures. Also in case of the brass the results showed significant strain-rate sensitivity in the material response.

Mechanical properties at high strain-rate of lead core and brass jacket of a NATO 7.62 mm ball bullet / Peroni, Lorenzo; Scapin, Martina; Fichera, Claudio; A. Manes M., Giglio. - STAMPA. - (2012). (Intervento presentato al convegno DYMAT 2012 - 10th International Conference on the Mechanical and Physical Behaviour of Materials under Dynamic Loading tenutosi a Freiburg, Germany nel September 2nd-7th, 2012).

Mechanical properties at high strain-rate of lead core and brass jacket of a NATO 7.62 mm ball bullet

PERONI, LORENZO;SCAPIN, MARTINA;FICHERA, CLAUDIO;
2012

Abstract

Numerical simulations are now an actual option in order to try to reproduce and understand the mechanical response in components subjected to extreme loading conditions, like in a ballistic impact. A correct materials calibration is therefore necessary in order to extract the materials parameters. In this work the simple and widely used Johnson-Cook model was used to analyse the experimental data obtained for the characterization of the bullet materials. The bullet under investigation is a full metal jacket ball, with a lead-antimony alloy core and a brass jacket. The experimental tests cover a wide range in strain-rate, starting from quasi-static tests up to high dynamic tests performed on a standard Split Hopkinson Pressure Bar setup. In general, there is a great lack in strain-rate sensitivity and failure data. Pure lead is very soft and ductile, so antimony is used to give greater hardness and strength. The results of this study show a significant strain-rate influence for this alloy that can be associated with the presence of the lead-antimony phases and their structures. Also in case of the brass the results showed significant strain-rate sensitivity in the material response.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2503347
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo