In this paper we prove some lower bounds for the compliance functional, in terms of the 1-dimensional Hausdorff measure of the Dirichlet region and the number of its connected components. When the measure of the Dirichlet region is large, these estimates are asymptotically optimal and yield a proof of a conjecture by Buttazzo and Santambrogio.
Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length / Tilli, Paolo. - In: NETWORKS AND HETEROGENEOUS MEDIA. - ISSN 1556-1801. - STAMPA. - 7:1(2012), pp. 127-136. [10.3934/nhm.2012.7.127]
Compliance estimates for two-dimensional problems with Dirichlet region of prescribed length
TILLI, PAOLO
2012
Abstract
In this paper we prove some lower bounds for the compliance functional, in terms of the 1-dimensional Hausdorff measure of the Dirichlet region and the number of its connected components. When the measure of the Dirichlet region is large, these estimates are asymptotically optimal and yield a proof of a conjecture by Buttazzo and Santambrogio.File | Dimensione | Formato | |
---|---|---|---|
TilliNHM.pdf
non disponibili
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
278.39 kB
Formato
Adobe PDF
|
278.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2498762
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo