Optimal filters for nonlinear systems are in general difficult to derive or implement. The common approach is to use approximate solutions such as extended Kalman filters, ensemble filters or particle filters. However, no optimality properties can be guaranteed by these approximations, and even the stability of the estimation error cannot often be ensured. Another relevant issue is that, in most practical situations, the system whose variables have to be estimated is not known, and a two-step procedure is adopted, based on model identification from data and filter design from the identified model. However, the designed filter may display large performance deteriorations in the case of modeling errors. In this paper, a new approach overcoming these issues is proposed, allowing the design of optimal filters for nonlinear systems in both the cases of known and unknown system. The approach is based on the direct filter design from a set of data generated by the system. Either experimental or simulated data can be used for design. A bound on the number of data necessary to ensure a given filter accuracy is also provided, showing that the proposed approach is not affected by the curse of dimensionality.

Direct Filtering: a new approach to optimal filter design for nonlinear systems / Novara, Carlo; RUIZ PALACIOS, FREDY ORLANDO; Milanese, Mario. - In: IEEE TRANSACTIONS ON AUTOMATIC CONTROL. - ISSN 0018-9286. - 58:1(2013), pp. 86-99. [10.1109/TAC.2012.2204160]

Direct Filtering: a new approach to optimal filter design for nonlinear systems

NOVARA, Carlo;RUIZ PALACIOS, FREDY ORLANDO;MILANESE, Mario
2013

Abstract

Optimal filters for nonlinear systems are in general difficult to derive or implement. The common approach is to use approximate solutions such as extended Kalman filters, ensemble filters or particle filters. However, no optimality properties can be guaranteed by these approximations, and even the stability of the estimation error cannot often be ensured. Another relevant issue is that, in most practical situations, the system whose variables have to be estimated is not known, and a two-step procedure is adopted, based on model identification from data and filter design from the identified model. However, the designed filter may display large performance deteriorations in the case of modeling errors. In this paper, a new approach overcoming these issues is proposed, allowing the design of optimal filters for nonlinear systems in both the cases of known and unknown system. The approach is based on the direct filter design from a set of data generated by the system. Either experimental or simulated data can be used for design. A bound on the number of data necessary to ensure a given filter accuracy is also provided, showing that the proposed approach is not affected by the curse of dimensionality.
File in questo prodotto:
File Dimensione Formato  
TAC_dvs_nl.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 3.39 MB
Formato Adobe PDF
3.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/2497471
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo