This article is concerned with the problem of multicollinearity in the linear part of a seemingly unrelated semiparametric (SUS) model. It is also suspected that some additional non stochastic linear constraints hold on the whole parameter space. In the sequel, we propose semiparametric ridge and non ridge type estimators combining the restricted least squares methods in the model under study. For practical aspects, it is assumed that the covariance matrix of error terms is unknown and thus feasible estimators are proposed and their asymptotic distributional properties are derived. Also, necessary and sufficient conditions for the superiority of the ridge-type estimator over the non ridge type estimator for selecting the ridge parameter K are derived. Lastly, a Monte Carlo simulation study is conducted to estimate the parametric and nonparametric parts. In this regard, kernel smoothing and cross validation methods for estimating the nonparametric function are used.

Seemingly unrelated ridge regression in semiparametric models / Roozbeh, M.; Arashi, M.; Gasparini, Mauro. - In: COMMUNICATIONS IN STATISTICS. THEORY AND METHODS. - ISSN 0361-0926. - 41:8(2012), pp. 1364-1386. [10.1080/03610926.2010.542859]

Seemingly unrelated ridge regression in semiparametric models.

GASPARINI, Mauro
2012

Abstract

This article is concerned with the problem of multicollinearity in the linear part of a seemingly unrelated semiparametric (SUS) model. It is also suspected that some additional non stochastic linear constraints hold on the whole parameter space. In the sequel, we propose semiparametric ridge and non ridge type estimators combining the restricted least squares methods in the model under study. For practical aspects, it is assumed that the covariance matrix of error terms is unknown and thus feasible estimators are proposed and their asymptotic distributional properties are derived. Also, necessary and sufficient conditions for the superiority of the ridge-type estimator over the non ridge type estimator for selecting the ridge parameter K are derived. Lastly, a Monte Carlo simulation study is conducted to estimate the parametric and nonparametric parts. In this regard, kernel smoothing and cross validation methods for estimating the nonparametric function are used.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2496060
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo