To each path of strongly indefinite self-adjoint Fredholm operators with invertible ends there is associated an integer called spectral flow. We develop a new approach to spectral flow which permits us to prove that for a one-parameter family of strongly indefinite functionals, there is bifurcation of critical points from a trivial branch if the spectral flow of the path of Hessians along the branch is non-zero.
Spectral Flow and Bifurcation of Critical Points of Strongly Indefinite Functionals. / Fitzpatrick P.; Pejsachowicz J.; Recht L.. - In: COMPTES RENDUS DE L'ACADÉMIE DES SCIENCES. SÉRIE 1, MATHÉMATIQUE. - ISSN 0764-4442. - STAMPA. - 325 serie I(1997), pp. 743-747.
Titolo: | Spectral Flow and Bifurcation of Critical Points of Strongly Indefinite Functionals. | |
Autori: | ||
Data di pubblicazione: | 1997 | |
Rivista: | ||
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
http://hdl.handle.net/11583/2495713