The 3-STAR program is the new cubesat educational project at the Politecnico di Torino. It has been thought in response to the GEOID call for proposals issued by the Education Office of the European Space Agency. The GEOID (GENSO Experimental Orbital Initial Demonstration) initiative wants to settle an orbiting constellation of cubesats to be operated by the GENSO (Global Educational Network for Satellite Operations) ground-stations network. GEOID is expected to be the communication backbone of the initial version of the HUMSAT system. The main goal of HUMSAT is to use the constellation of satellites and the GENSO ground stations, to provide support for humanitarian initiatives, especially in developing areas or areas without infrastructure. The 3-STAR will be one of the nine cubesats in the GEOID constellation. It will be a 3U cubesat derived from the e-st@r cubesat experience. In addition, it will carry two payloads: the HumSat payload, consisting of a simple but extremely reliable communication module compatible with the elements of the HUMSAT system, and the P-GRESSION (Payload for GNSS remote sensing and signal detection) payload. The P-GRESSION payload aims at performing measurements by means of radio-occultation technique and scattering theory, using GNSS signals. In this paper the 3-STAR project is described together with a preliminary assessment on the performances of the GEOID/HUMSAT constellation. The main requirements of the GEOID/HUMSAT project have been used to drive an optimization process aimed at determining the best configurations of a swarm-like constellation of cubesats. The mission scenario is made of the nine GEOID cubesats, a number of GENSO ground nodes and several sensors distributed on the Earth surface. The results of the analysis demonstrate that the aspects related to the cubesat-system design cannot be decoupled from the design of the constellation, not even in a preliminary phase. Further, it is demonstrated that the performances of a swarm-like constellation are comparable to those of a well-distributed one

Constellation of cubesats: 3-star in the humsat/geoid mission / Ridolfi, Guido; Corpino, Sabrina; Stesina, Fabrizio; Notarpietro, Riccardo; Cucca, Manuela; Nichele, Fabio. - ELETTRONICO. - (2011). (Intervento presentato al convegno 62nd International Astronautical Congress tenutosi a Cape Town, South Africa nel 3 -7 Oct 2011).

Constellation of cubesats: 3-star in the humsat/geoid mission

RIDOLFI, GUIDO;CORPINO, Sabrina;STESINA, FABRIZIO;NOTARPIETRO, RICCARDO;CUCCA, MANUELA;NICHELE, FABIO
2011

Abstract

The 3-STAR program is the new cubesat educational project at the Politecnico di Torino. It has been thought in response to the GEOID call for proposals issued by the Education Office of the European Space Agency. The GEOID (GENSO Experimental Orbital Initial Demonstration) initiative wants to settle an orbiting constellation of cubesats to be operated by the GENSO (Global Educational Network for Satellite Operations) ground-stations network. GEOID is expected to be the communication backbone of the initial version of the HUMSAT system. The main goal of HUMSAT is to use the constellation of satellites and the GENSO ground stations, to provide support for humanitarian initiatives, especially in developing areas or areas without infrastructure. The 3-STAR will be one of the nine cubesats in the GEOID constellation. It will be a 3U cubesat derived from the e-st@r cubesat experience. In addition, it will carry two payloads: the HumSat payload, consisting of a simple but extremely reliable communication module compatible with the elements of the HUMSAT system, and the P-GRESSION (Payload for GNSS remote sensing and signal detection) payload. The P-GRESSION payload aims at performing measurements by means of radio-occultation technique and scattering theory, using GNSS signals. In this paper the 3-STAR project is described together with a preliminary assessment on the performances of the GEOID/HUMSAT constellation. The main requirements of the GEOID/HUMSAT project have been used to drive an optimization process aimed at determining the best configurations of a swarm-like constellation of cubesats. The mission scenario is made of the nine GEOID cubesats, a number of GENSO ground nodes and several sensors distributed on the Earth surface. The results of the analysis demonstrate that the aspects related to the cubesat-system design cannot be decoupled from the design of the constellation, not even in a preliminary phase. Further, it is demonstrated that the performances of a swarm-like constellation are comparable to those of a well-distributed one
File in questo prodotto:
File Dimensione Formato  
2460609.pdf

accesso aperto

Descrizione: Borsa DIMEAS
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 1.09 MB
Formato Adobe PDF
1.09 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2460609
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo