The aeroelastic design of innovative aircraft wing configurations imposes the designer to deal with specific phenomena, which are not usually considered in classical aircraft definition. The design process itself, though, gives the designer several indications on how to maintain the safety standards imposed by regulations. The investigation of the basic aeroelastic principles for unconventional wings with high aspect ratios can be extremely interesting as, once introduced in a multidisciplinary design, they can be very effective in giving an early determination of the static and dynamic behaviour of the aircraft, leading to significant improvements in the configuration weight, cost, and overall performance. The paper shows some preliminary results as part of the main objectives of the In.A.Team group (Innovative Aircraft Theoretical-Experimental Aeroelastic Modelling) at Politecnico di Torino, Italy. The In.A.Team Project has the following main objectives: 1) to develop multidisciplinary analysis methods appropriate to unconventional aircrafts (highly flexible, "morphing" vehicles); 2) to develop the capability of illustrating and understanding the effects of uncertainties on the behaviour of an aeroelastic system; 3) to apply the innovative adaptive L1 control techniques to highly flexible wings, 4) to integrate theoretical analysis with commercial structural (FEM) and aerodynamic tools (CFD). 5) to design and manufacture an aeroelastic experimental-test-model. 6) to validate theoretical/numerical results by vibration and aeroelastic wind tunnel tests.

Innovative Aircraft Aeroelastic Modelling and Control / Battipede, Manuela; Cestino, Enrico; Frulla, Giacomo; Gerussi, S.; Gili, Piero. - 3:(2010), pp. 2321-2334. (Intervento presentato al convegno 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010 tenutosi a Nice (France) nel 19 – 24 September 2010).

Innovative Aircraft Aeroelastic Modelling and Control

BATTIPEDE, Manuela;CESTINO, ENRICO;FRULLA, Giacomo;GILI, Piero
2010

Abstract

The aeroelastic design of innovative aircraft wing configurations imposes the designer to deal with specific phenomena, which are not usually considered in classical aircraft definition. The design process itself, though, gives the designer several indications on how to maintain the safety standards imposed by regulations. The investigation of the basic aeroelastic principles for unconventional wings with high aspect ratios can be extremely interesting as, once introduced in a multidisciplinary design, they can be very effective in giving an early determination of the static and dynamic behaviour of the aircraft, leading to significant improvements in the configuration weight, cost, and overall performance. The paper shows some preliminary results as part of the main objectives of the In.A.Team group (Innovative Aircraft Theoretical-Experimental Aeroelastic Modelling) at Politecnico di Torino, Italy. The In.A.Team Project has the following main objectives: 1) to develop multidisciplinary analysis methods appropriate to unconventional aircrafts (highly flexible, "morphing" vehicles); 2) to develop the capability of illustrating and understanding the effects of uncertainties on the behaviour of an aeroelastic system; 3) to apply the innovative adaptive L1 control techniques to highly flexible wings, 4) to integrate theoretical analysis with commercial structural (FEM) and aerodynamic tools (CFD). 5) to design and manufacture an aeroelastic experimental-test-model. 6) to validate theoretical/numerical results by vibration and aeroelastic wind tunnel tests.
2010
9780956533302
File in questo prodotto:
File Dimensione Formato  
ICAS_ID231.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Pubblico - Tutti i diritti riservati
Dimensione 3.49 MB
Formato Adobe PDF
3.49 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2373885
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo