This paper describes the non-linear identification of a progressively damaged reinforced concrete beam-column node. The aims are the detection and identification of the different sources of damping and their dependence from the damage level. To this end a specially formulated non-linear identification method is proposed, based on a time-varying polynomial approximation of the system dynamics, suitable for use in the presence of excitations of any form. A minimum condition imposed to the identified dissipated energy leads to the distinction of the linear viscous component from the other damping mechanisms. The estimated values obtained from the experimental tests show a significant influence of the damage level on the linear viscous damping coefficient. This suggests that, in a non-linear dynamic time-history analysis, the use of Rayleigh damping model with proportionality to the initial stiffness is basically in contrast with experimental evidence and more refined viscous damping models are needed for prediction purposes.

Non-linear Damping and Frequency Identification in a Progressively Damaged R.C. Element / Demarie, GIACOMO VINCENZO; Sabia, Donato. - In: EXPERIMENTAL MECHANICS. - ISSN 0014-4851. - ELETTRONICO. - 51:2(2010), pp. 229-245. [10.1007/s11340-010-9360-4]

Non-linear Damping and Frequency Identification in a Progressively Damaged R.C. Element

DEMARIE, GIACOMO VINCENZO;SABIA, Donato
2010

Abstract

This paper describes the non-linear identification of a progressively damaged reinforced concrete beam-column node. The aims are the detection and identification of the different sources of damping and their dependence from the damage level. To this end a specially formulated non-linear identification method is proposed, based on a time-varying polynomial approximation of the system dynamics, suitable for use in the presence of excitations of any form. A minimum condition imposed to the identified dissipated energy leads to the distinction of the linear viscous component from the other damping mechanisms. The estimated values obtained from the experimental tests show a significant influence of the damage level on the linear viscous damping coefficient. This suggests that, in a non-linear dynamic time-history analysis, the use of Rayleigh damping model with proportionality to the initial stiffness is basically in contrast with experimental evidence and more refined viscous damping models are needed for prediction purposes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/2363149
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo