Externally pressurized grooved gas thrust bearings for shaft systems were studied both numerically and experimentally. Three thrust bearings composed of a symmetric pair of rings facing a shaft collar were tested. The rings, with inner and outer diameters of 52 and 110 mm, respectively, are equipped with a polar array of eight holes, with a 0.35-mm diameter, distributed on a 65-mm-diameter circumference. The influence of a circumferential groove situated in correspondence with the supply holes is discussed. In particular, two thrust bearings have a rectangular cross-sectional groove of 0.7-mm width and 10- and 20-lm depth. A numerical model based on Reynolds’ equation is used to study thrust-bearing performance in relation to geometry (diameter of supply holes, clearance, and groove dimensions). A test rig is used to monitor thrust-bearing axial load capacity and stiffness, and evaluate damping and stability at different supply pressure rates. Experimental and numerical results are compared and discussed.
Performance of externally pressurized grooved thrust bearings / Belforte, Guido; Colombo, Federico; Raparelli, Terenziano; Trivella, Andrea; Viktorov, Vladimir. - In: TRIBOLOGY LETTERS. - ISSN 1023-8883. - 37:(2010), pp. 553-562. [10.1007/s11249-009-9550-3]
Performance of externally pressurized grooved thrust bearings
BELFORTE, GUIDO;COLOMBO, FEDERICO;RAPARELLI, TERENZIANO;TRIVELLA, ANDREA;VIKTOROV, VLADIMIR
2010
Abstract
Externally pressurized grooved gas thrust bearings for shaft systems were studied both numerically and experimentally. Three thrust bearings composed of a symmetric pair of rings facing a shaft collar were tested. The rings, with inner and outer diameters of 52 and 110 mm, respectively, are equipped with a polar array of eight holes, with a 0.35-mm diameter, distributed on a 65-mm-diameter circumference. The influence of a circumferential groove situated in correspondence with the supply holes is discussed. In particular, two thrust bearings have a rectangular cross-sectional groove of 0.7-mm width and 10- and 20-lm depth. A numerical model based on Reynolds’ equation is used to study thrust-bearing performance in relation to geometry (diameter of supply holes, clearance, and groove dimensions). A test rig is used to monitor thrust-bearing axial load capacity and stiffness, and evaluate damping and stability at different supply pressure rates. Experimental and numerical results are compared and discussed.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/2351671
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo