The theory of surfaces in Euclidean space can be naturally formulated in the more general context of Legendre surfaces into the space of contact elements. We address the question of deformability of Legendre surfaces with respect to the symmetry group of Lie sphere contact transformations from the point of view of the deformation theory of submanifolds in homogeneous spaces. Necessary and sufficient conditions are provided for a Legendre surface to admit non-trivial deformations, and the corresponding existence problem is discussed.

Deformation of Surfaces in Lie Sphere Geometry / Musso, Emilio; Nicolodi, L.. - In: TOHOKU MATHEMATICAL JOURNAL. - ISSN 0040-8735. - STAMPA. - 58:2(2006), pp. 161-187.

Deformation of Surfaces in Lie Sphere Geometry

MUSSO, EMILIO;
2006

Abstract

The theory of surfaces in Euclidean space can be naturally formulated in the more general context of Legendre surfaces into the space of contact elements. We address the question of deformability of Legendre surfaces with respect to the symmetry group of Lie sphere contact transformations from the point of view of the deformation theory of submanifolds in homogeneous spaces. Necessary and sufficient conditions are provided for a Legendre surface to admit non-trivial deformations, and the corresponding existence problem is discussed.
File in questo prodotto:
File Dimensione Formato  
Musso Nicolodi - Deformation of surfaces in Lie Sphere Geometry.pdf

embargo fino al 10/07/2012

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 599.57 kB
Formato Adobe PDF
599.57 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11583/1994211
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo