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DEFORMATION AND APPLICABILITY OF SURFACES
IN LIE SPHERE GEOMETRY

EMILIO MUSSO AND LORENZO NICOLODI

(Received March 31, 2004, revised December 6, 2004)

Abstract. The theory of surfaces in Euclidean space can be naturally formulated in
the more general context of Legendre surfaces into the space of contact elements. We ad-
dress the question of deformability of Legendre surfaces with respect to the symmetry group
of Lie sphere contact transformations from the point of view of the deformation theory of
submanifolds in homogeneous spaces. Necessary and sufficient conditions are provided for a
Legendre surface to admit non-trivial deformations, and the corresponding existence problem
is discussed.

Introduction. The classical problems of applicability of surfaces in Euclidean, projec-
tive and conformal geometry fit into the general theory of deformation of submanifolds in
homogeneous spaces as formulated by Cartan [9, 10] and further developed by Griffiths and
Jensen [17, 18]. Two submanifolds in a homogeneous space, f, f̃ : M → G/K , are k-th
order deformations of each other if there exists a smooth map v : M → G such that, for every
p ∈ M , the Taylor expansions about p of f̃ and v(p) · f agree through k-th order terms; if v
is constant, f and f̃ are congruent with respect to G. Of course, for each concrete geometric
situation there is a specific problem to solve. In Euclidean space, two surfaces are applicable
in Gauss’ sense if they are first order Euclidean deformations of each other, which means
that they are isometric with respect to the induced metrics, and are congruent to second order.
In projective 3-space, Fubini’s notion of applicability of surfaces goes to second order and
rigidity to third order. In Möbius and Laguerre geometry, second order deformable surfaces
coincide with isothermic and L-isothermic surfaces, respectively [20, 22].

This paper studies the deformation problem for surfaces in another classical geometry:
Lie sphere geometry. It is the outcome of our attempts to understand Lie-applicable sur-
faces within the general theory of deformation. Lie-applicable surfaces were considered by
Blaschke and his collaborators in the 1920s [5]. Recently, interest in Lie-applicable surfaces
has reappeared in the work of Ferapontov concerning the relation between Lie sphere geom-
etry of hypersurfaces and the theory of integrable systems [12, 14].

To put our discussion in perspective let us recall some facts about Lie sphere geometry.
Any smooth immersion of an oriented surface into 3-space has a contact lift to the unit sphere
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bundle Λ of S3 = R3 ∪ {∞} called the Legendre lift. The unit sphere bundle is acted on
transitively by the group of Lie sphere transformations. This group is the group of contact
transformations generated by the conformal transformations of S3 together with the group of
normal shifts, which transform an oriented surface to its parallel surface at a fixed oriented dis-
tance in the normal direction. Thus the Lie sphere group acts on the set of Legendre surfaces.
The principal aim of Lie sphere geometry is to study the properties of an immersion which
are invariant under this action [5, 11, 26]. Blaschke associated with any Legendre surface a
canonical coframe C and proved that the position of a generic Legendre surface is completely
determined by its canonical coframe, up to Lie sphere transformations. However, he observed
that there are exceptions to this rigidity result. Accordingly, two non-congruent Legendre im-
mersions f, f̃ are called Lie-applicable if C = C̃. As we will see in Section 2, examples of
Lie-applicable surfaces include the Legendrian lifts of isothermic and L-isothermic surfaces,
which are known to constitute integrable systems [6, 2, 24].

In the paper, we think of Λ as a homogeneous space of the identity component G̃ of
the Lie sphere group. We will prove that two (nondegenerate) Legendre immersions are Lie-
applicable if and only if they are second order deformations of each other; that two Legendre
immersions are always local first order deformations of each other; and that they have third
order rigidity. Further, we show how to recognize that a Legendre surface is deformable and
in this case how to find all its deformations.

In Section 1, we collect some background material about the Lie sphere geometry of
surfaces and develop the method of moving frames in this context (see [5, 11]). We iden-
tify Λ with the space of isotropic 2-spaces in R4,2 and linearize the action of Lie transfor-
mations. In this model, the identity component of O(4, 2) acts on Λ by contact diffeomor-
phisms and provides a double cover of G̃. We then apply the method of moving frames to
study Legendre surfaces and recall the construction of a canonical lift to the group G̃ under
a natural nondegeneracy assumption. For any Legendre surface, we introduce the canonical
coframe (α1, α2), which turns out to be the analogue of that considered by Blaschke [5], and
the quadratic and cubic forms of the surface. We define a set of local differential invariants
q1, q2, p1, p2, r1, r2 for a Legendre surface and relate them to the classical ones discussed by
Blaschke and Ferapontov. We then deduce the compatibility conditions, which play the role
of the Gauss-Codazzi equations for a Legendre surface in Lie sphere geometry. The functions
q1, q2, p1, p2 are completely determined by the canonical coframe, while r1, r2 govern the
extrinsic geometry of the Legendre immersion.

In Section 2, we investigate the class of Legendre surfaces which are not determined by
the canonical coframe. We take the point of view of the deformation theory of submanifolds
in homogeneous spaces. We introduce the concept of deformation and discuss the related
questions of analytic contact and applicability. We study the problem of second order defor-
mation of Legendre immersions and prove that two nondegenerate Legendre immersions are
second order deformations of each other precisely when they are Lie-applicable, or equiva-
lently, when they have the same quotient of cubic to quadratic forms (see Theorem 2.10).
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In Section 3, for a given Legendre immersion, we introduce a suitable linear connection
on the trivial bundle M2 × R3 and show that the existence of non-zero parallel sections with
respect to this connection is a necessary and sufficient condition for the Legendre immersion
to have non-trivial deformations. In particular, we show that the non-trivial deformations of
nondegenerate Legendre immersion depend on three parameters at most. The above character-
ization allows the introduction of free parameters in the Maurer-Cartan form of the canonical
frame of a deformable surface without violating the structure equations, and suggests the ex-
istence of a Bäcklund transformation for the class of deformable Legendre surfaces. We will
return on this topic elsewhere.

In Section 4, we discuss some examples of deformable Legendre immersions.
In the last section, we study the existence of deformations. We use the characterization of

deformable Legendre immersions in terms of parallel sections to set up the exterior differential
system of a deformation. We then prove that this system is in involution in Cartan’s sense and
that its general solutions depend on six functions in one variable.

1. Surface theory in Lie sphere geometry. In this section, we briefly recall the basic
structure of Lie sphere geometry and develop the method of moving frames for immersed
surfaces in the context of that geometry. More details about Lie sphere geometry are given
in the recent monograph of Cecil [11], in the book of Blaschke [5], or in Lie’s original work
[19].

1.1. Legendre immersions. Let S3 be the unit sphere in R4 and identify the unit tan-
gent bundle Λ = T1S

3 with the set of all pairs (v, ξ) ∈ S3 × S3 such that v is orthogonal to
ξ , i.e.,

Λ = {(v, ξ) ∈ S3 × S3 ⊂ R4 × R4 | v · ξ = 0} .

Let π1, π2 : T1S
3 → S3 denote the restrictions to Λ of the canonical projections of S3 × S3

onto its factors. Then the equation dπ1 · π2 = 0 defines a 4-dimensional contact distribution
D on Λ.

If F : M2 → S3 is an immersed surface oriented by a field of unit normals n, then
(F, n) : M2 → Λ is an integral submanifold of D. In general, an immersion f : M2 → Λ

which is an integral submanifold of D is called a Legendre surface. The Lie sphere group,
that is, the group generated by the conformal transformations of S3 together with the group
of normal shifts, which transform an oriented surface to its parallel surface at a fixed oriented
distance in the normal direction, preserves the contact distribution D and acts naturally on the
space of Legendre surfaces.

If f = (F, n) : M2 → Λ is a Legendre immersion, the smooth map F : M2 → S3 need
not be an immersion. However, without loss of generality, we can always assume (applying if
necessary a normal shift) that F is locally an immersion. This follows from a result of Pinkall
[26] (see also [11]) stating that, for each p ∈ M2, there exists t ∈ [0, π) for which the parallel
surface Ft = (cos t)F + (sin t)n is locally an immersion.
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We recall that the curvature sphere at p ∈ M2 corresponding to a principal curvature ki
is the oriented sphere in oriented contact with F(M2) at F(p) and centered at the focal point
determined by the principal curvature ki . The notion of a curvature sphere is invariant under
Lie transformations. For instance, if F : M2 → R3 is an immersed surface oriented by the
field of normals n : M2 → S2, then (F, n) : M2 → R3 × S2 ⊂ Λ is a Legendre surface. In
this case, the curvature spheres at a point p ∈ M2 are the oriented spheres σi(p) centered at
F(p) + ki(p)

−1n(p), with signed radius ki(p)−1, i = 1, 2. When ki(p) = 0, then σi is the
oriented tangent plane of the surface at F(p).

DEFINITION 1.1 (Nondegeneracy condition). We say that a Legendre surface f =
(F, n) : M2 → Λ is nondegenerate if F is umbilic free and both of the curvature spheres
corresponding to the principal curvatures k1, k2 are immersions into the space of oriented
2-spheres in S3 (including points).

1.2. Moving Lie frames for Legendre surfaces. Let R4,2 denote R6 with the symmet-
ric bilinear form

〈X,Y 〉 = −(x0y5 + x5y0)− (x1y4 + x4y1)+ x2y2 + x3y3 = tXgY(1)

of signature (4, 2), where (xJ ) and (yJ ) are the coordinates of X and Y with respect to the
standard basis (ε0, . . . , ε5) of R6. Let G be the connected component of the identity of the
group

{A ∈ GL(6,R) | tAgA = g}
of linear transformations which leave the form (1) invariant, and let g = {B ∈ gl(6,R) | tBg +
gB = 0} be its Lie algebra. For each A ∈ G, we denote by AJ = A · εJ the J -th column
vector of A. Regarding each of the vectors AJ as a vector-valued function v : G → R6 onG,
since the AJ form a basis, there exist unique 1-forms ωIJ with I, J ∈ {0, 1, . . . , 5}, so that

dAJ = ωIJAI , J = 0, . . . , 5 .(2)

(We use the summation convention on repeated indices.) The 1-forms ωIJ are the components
of the left-invariant Maurer-Cartan form ω = A−1dA of G. They are connected by relations
obtained from the differentiation of 〈AI ,AJ 〉 = gIJ , I, J ∈ {0, 1, . . . , 5}, which are

tωg + gω = 0 , or ωKI gKJ + ωKJ gKI , I, J ∈ {0, 1, . . . , 5} ,(3)

and reflect the structure of the Lie algebra g. The forms

ω0
0, ω

1
1, ω

0
1, ω

1
0, ω

2
0, ω

3
0, ω

2
1, ω

3
1, ω

4
0, ω

3
2, ω

0
2, ω

0
3, ω

1
2, ω

1
3, ω

0
4

yield a left-invariant coframe field onG. Differentiating (2), we obtain the structure equations
of G, which are

dω = −ω ∧ ω , or dωIJ = −ωIK ∧ ωKJ , I, J ∈ {0, 1, . . . , 5} .(4)

For each X ∈ G, the Maurer-Cartan form ω transforms as follows

R∗
X(ω) = X−1ωX .(5)
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The projectivization Q = P(L) of the light cone L of R4,2 is known in the classical
literature as the Lie quadric. In Lie sphere geometry, the Lie quadric parametrizes the set of
all oriented 2-sphere in S3, including points, and the lines in Q correspond to parabolic pencils
of spheres in oriented contact. The set of all lines in Q, that is, the isotropic Grassmannian
of null 2-planes through the origin in R4,2, forms a smooth manifold which can be identified
with Λ (for more details see [11]). Under this identification, the group G acts transitively on
Λ by the usual action ofG on the GrassmannianG2(R4,2) and preserves the contact structure.
The projection map

πΛ : A ∈ G → A[ε0 ∧ ε1] = [A0 ∧A1] ∈ Λ = G/G0(6)

defines a principal G0-bundle over Λ, whereG0 is the isotropy subgroup at the chosen origin
[ε0 ∧ ε1].

A Legendre surface f : M2 → Λ may then be represented by two maps F0, F1 : M2 →
L such that f = [F0 ∧F1], 〈dF0, F1〉 = 0 and 〈F0, F1〉 = 0. Of course, such a representation
is not unique. For example, if F : M2 → R3 is any smooth immersion in R3, oriented by a
field of unit normals n : M2 → S2, then the Legendre lift f = [F0 ∧ F1] is given by


F0 =

(
1,

1√
2
F 1, F 2, F 3,− 1√

2
F 1,

1

2
F · F

)t
,

F1 = 1√
2

(
0,

1

2
(1 + n1), n2, n3,

1√
2
(1 − n1), n · F

)t
.

(7)

A frame field along a Legendre surface f : M2 → Λ is a smooth map A : U → G

defined on some open subset of M2 such that f = [A0 ∧ A1]. For each local frame A :
U → G we let α = A∗ω. The Legendre condition simply means that the form α4

0 vanishes
identically. Any other local frame is given by Ã = A ·X, for some smooth mapX : U → G0,
and the 1-forms α and α̃ are related by

α̃ = X−1dX +X−1αX .(8)

The totality of frames along f is the principal G0-bundle F0(f ) → M2, where

F0(f ) = {(p,A) ∈ M ×G | f (p) = [A0 ∧A1]} .
The canonical frame. Following the usual practice in the method of moving frames, we

can construct a canonical lift to the groupG/Z2 for any nondegenerate Legendre surface. The
idea of the procedure is at each step to normalize the Maurer-Cartan matrix of a frame along
f as much as possible, and then take the exterior derivative of the equations expressing this
normalization, thereby leading to the next step. Similar preferred frames have been given by
Blaschke [5] and Ferapontov [12, 14]. Here, we skip the construction.

THEOREM 1.2 (Existence of the canonical frame). Let f : M2 → Λ be a nonde-
generate Legendre immersion of an oriented surface M2. Then there exists a unique lift
[A] : M2 → G/Z2 satisfying the Pfaffian equations

α4
0 = α2

0 = α3
1 = α3

2 = α1
0 − α2

1 = α0
1 − α3

0 = α0
2 = α1

3 = 0(9)
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with the independence condition

α3
0 ∧ α2

1 > 0 .(10)

[A] is called the canonical frame field along f . Let α1 = α3
0 and α2 = α2

1. The coframe
(α1, α2) on M2 is referred to as the canonical coframe of f . The bundle of canonical frames
along f will be denoted by F(f ) → M2 .

DEFINITION 1.3. The quadratic form Φ and the cubic form Ψ of the immersion f are
defined by

Φ = −α1α2 , Ψ = −(α1)3 + (α2)3 ,(11)

respectively. The quotient B = Ψ/Φ of the cubic form Ψ to the quadratic form Φ is a well-
defined map B : T (M) → R ∪{∞} which is a rational function when restricted to the tangent
spaces Tp(M). B is called the Fubini-Blaschke invariant of f .

The invariant functions. The only non zero components of the Maurer-Cartan form α

of the canonical frame are α1 = α3
0 , α2 = α2

1, and α0
0, α1

1 , α1
2 , α0

3, α0
4. From the exterior

differentiation of these forms and the structure equations, it follows that there exist smooth
functions q1, q2, p1, p2, and r1, r2 such that


α0

0 = −2q1α
1 + q2α

2 , α1
1 = −q1α

1 + 2q2α
2 ,

α0
3 = r1α

1 + p2α
2 , α1

2 = p1α
1 + r2α

2 ,

α0
4 = −r2α1 + r1α

2 .

(12)

We shall refer to these functions as the invariant functions of f . In fact, using the structure
equations, we obtain

dα1 = α0
0 ∧ α1 , dα2 = α1

1 ∧ α2 ,(13)

dα0
0 = (α2 − α0

3) ∧ α1 , dα1
1 = (α1 − α1

2) ∧ α2 ,(14)

dα1
2 = −α1

1 ∧ α1
2 , dα0

3 = −α0
0 ∧ α0

3 , dα0
4 = −(α0

0 + α1
1) ∧ α0

4 .(15)

In terms of the invariant functions, these equations become

dα1 = −q2α
1 ∧ α2 , dα2 = −q1α

1 ∧ α2 ,(16) {
−2dq1 ∧ α1 + dq2 ∧ α2 = (p2 − q1q2 − 1)α1 ∧ α2 ,

−dq1 ∧ α1 + 2dq2 ∧ α2 = (−p1 + q1q2 + 1)α1 ∧ α2 ,
(17)




dr1 ∧ α1 + dp2 ∧ α2 = (2q2r1 + 3q1p2)α
1 ∧ α2 ,

dp1 ∧ α1 + dr2 ∧ α2 = (2q1r2 + 3q2p1)α
1 ∧ α2 ,

−dr2 ∧ α1 + dr1 ∧ α2 = 4(q1r1 − q2r2)α
1 ∧ α2 .

(18)

Equations (16) and (17) tell us that the invariant functions q1, q2, p1, and p2 are determined
by the canonical coframe. Equations (18) can be viewed as compatibility conditions arising
from the fact that the canonical coframe is obtained from the Legendre immersion. Thus,
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we may think of (16) and (17) as the Gauss equations and of (18) as the Codazzi-Mainardi
equations of the immersion.

Relations with Euclidean geometry. Let f : M2 → Λ be the Legendre lift of an ori-
ented immersion F : M2 → R3 with Gauss map n = (n1, n2, n3) and suppose that f is
nondegenerate. Let (u, v) be curvature line coordinates on M2. Then the canonical coframe
takes the form

α1 = 1

k1 − k2
(
√
e−1g (k1)u (k2)

2
v)

1/3dv , α2 = 1

k2 − k1
(
√
eg−1 (k1)

2
u (k2)v)

1/3du ,

where e and g are the coefficients of the first fundamental form of F with respect to the
coordinate system (u, v). Moreover, the quadratic and cubic forms take the form

Φ = 1

(k1 − k2)2
(k1)u(k2)vdudv ,

Ψ = − (k1)u(k2)v

(k1 − k2)3
√
eg
(e(k1)udu

3 + g(k2)vdv
3) .

Observe that α1 = (βγ 2)1/3dv and α2 = (β2γ )1/3du, where β and γ are given by

β = 1

k1 − k2

√
eg−1 (k1)u , γ = 1

k2 − k1

√
e−1g (k2)v .

Using the above structure equations, the invariants q1, q2, p1, p2 can be expressed in terms of
β and γ . For example,

q1 = − 1

3(β2γ )2/3

(
2βv + β

γ
γv

)
, q2 = 1

3(βγ 2)2/3

(
γ

β
βu + 2γu

)
.

The invariants β and γ correspond to the invariants p and q considered by Ferapontov [12],
p. 207, and Blaschke [5] in the construction of the canonical frame. Note that the vanishing
of both β and γ is equivalent to the condition that the principal curvatures are constant along
the corresponding principal foliations. This property characterizes the cyclides of Dupin. If
one of the two principal curvatures is constant along the corresponding principal foliation, the
surface is the envelope of a one-parameter family of oriented spheres (including planes and
point-spheres), and we are in the presence of a canal surface.

REMARK 1.4. Associated with any nondegenerate Legendre immersion f there is the
3-web formed by the asymptotic lines of the quadratic form Φ and by the cyclidic curves1,
i.e., the curves along the zero-directions of the cubic form Ψ . In view of (11), the curves of
this web can be defined in terms of the canonical coframe by the Pfaffian equations

α1 = 0 , α2 = 0 , α1 − α2 = 0 .(19)

The connection form of the 3-web is the 1-form ζw, uniquely determined by the equations

dα1 = ζw ∧ α1 , dα2 = ζw ∧ α2 .

1The family of curves which are orthogonal to the cyclidic curves with respect to the quadratic form Φ is called
anti-cyclidic system.
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Equations (12) and (13) yield

ζw = −q1α
1 + q2α

2 .(20)

From (20) one then computes the curvature of the 3-web, which is

Rw = 1

3
(p2 − p1) .(21)

The surfaces for which the curvature vanishes identically are called diagonally cyclidic (see
[5, 12]).

2. Contact, deformation and applicability. Let us recall the general notion of de-
formation in homogeneous spaces [17, 18].

DEFINITION 2.1. LetG/K be a homogeneous space and let f, f̃ : N → G/K be two
smooth maps. We say that f and f̃ are k-th order deformations of each other if there exists
a smooth map B : N → G such that, for each point p ∈ N , f̃ and B(p)f have the same
k-th order jets at p, i.e., they have analytic contact of second order at p. The map B is said
to be a k-th order deformation. When B is constant the deformation is said to be trivial. A
map f : N → G/K is said to be deformable of order k if it admits a non-trivial k-th order
deformation.

First, we will express the condition of analytic contact in the special case of mappings
from a 2-dimensional manifoldM into Λ. For this we need to introduce some notation.

2.1. Analytic Contact. Let (x1, x2) be a local coordinate system on an open set U of
M . Let E be a vector space and let Sh(U) ⊗ E denote the symmetric E-valued k-forms on
U . The symmetric tensor product of s ∈ Sh(U) and t ∈ Sk(U) will be denoted by s · t . An
element T of Sh(U)⊗ E has a local expression

T = Ti1···ihdxi1 · · · dxih ,
where the coefficients Ti1···ih are E-valued smooth maps, which are totally symmetric in the
indices i1, . . . , ih. We then define the k-th order derivative of T to be the E-valued symmetric
form of order h+ k given by

δk(T ) = ∂kTi1···ih
∂xih+1 · · · ∂xih+k dx

i1 · · · dxihdxih+1 · · · dxih+k .

The definition depends on the choice of the local coordinates. Given a pair T0, T1 ∈ Sh(U)⊗E
ofE-valued symmetric h-forms and a 2×2 matrix ρ = (ρab ) ∈ Sk(U)⊗gl(2,R) of symmetric
k-forms, we set

(T0, T1)ρ = (ρ0
0T1 + ρ1

0T1, ρ
0
1T0 + ρ1

1T1) .

We can state the following

LEMMA 2.2. Let f = [F0 ∧ F1] : M2 → Λ and f̃ = [F̃0 ∧ F̃1] : M → Λ be two
smooth maps. Then, f and f̃ agree to second order at p ∈ M , i.e., they have the same second
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order jets at p, if and only if, for every local coordinate system (x1, x2) about p, there exist

ρ0 ∈ gl(2,R) , ρ1 ∈ T ∗(M)p ⊗ gl(2,R) , ρ2 ∈ S2(M)|p ⊗ gl(2,R)

such that

(F̃0|p, F̃1|p) = (F0|p, F1|p)ρ0 ,

(δF̃0|p, δF̃1|p) = (δF0|p, δF1|p)ρ0 + (F0|p, F1|p)ρ1 ,

(δ2F̃0|p, δ2F̃1|p) = (δ2F0|p, δ2F1|p)ρ0 + (δF0|p, δF1|p)ρ1 + (F0|p, F1|p)ρ2 .

(22)

PROOF. Let (x1, x2) be a local coordinate system on an open neighborhood U of p.
As G acts transitively on Λ, we may assume that

f (p) = f̃ (p) = [ε0 ∧ ε1] .
The map

y = (y1, . . . , y5) ∈ R5 �→ [X0(y) ∧X1(y)] ∈ Λ
defined by 


X0(y) =

(
1, 0, y1, y2, y3,

1

2
[(y1)2 + (y2)2]

)t
,

X1(y) =
(

0, 1, y4, y5,
1

2
[(y4)2 + (y5)2], y1y4 + y2y5 − y3

)t(23)

is a local coordinate system ofΛ centered at [ε0∧ε1]. Then, there exists an open neighborhood
U ′ ⊂ U of p and smooth maps h, h̃ : U ′ → R5 such that

f |U ′ = [(X0 ◦ h) ∧ (X1 ◦ h)] , f̃ |U ′ = [(X0 ◦ h̃) ∧ (X1 ◦ h̃)] .
Thus, f and f̃ have second order analytic contact at p if and only if the maps Ga = Xa ◦ h
and G̃a = Xa ◦ h̃, a = 0, 1, satisfy

Ga(p) = G̃a(p) , δGa|p = δG̃a|p , δ2Ga|p = δ2G̃a|p , a = 1, 2 .(24)

Let us write

(F0, F1) = (G1,G2)a , (F̃0, F̃2) = (G̃0, G̃2)b ,(25)

where a, b : U ′ → GL(2,R) are smooth maps. Using (24) and (25), a direct computation
shows that this is equivalent to (22), where ρ0, ρ1 and ρ2 are given by


ρ0 = a(p)b(p)−1 ,

ρ1 = (δa|p − ρ0δb|p)b(p)−1 ,

ρ2 = (
δ2a|p − ρ0δ

2b|p − 2ρ1δb|p
)
b(p)−1 . �

(26)
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REMARK 2.3. From the proof of this lemma we see that f and f̃ have first order
analytic contact at p if and only if there exist ρ0 ∈ gl(2,R) and ρ1 ∈ T ∗(M)p ⊗ gl(2,R)
such that {

(F̃0|p, F̃1|p) = (F0|p, F1|p)ρ0 ,

(δF̃0|p, δF̃1|p) = (δF0|p, δF1|p)ρ0 + (F0|p, F1|p)ρ1 .

2.2. Deformation of Legendre surfaces.

NOTATION 2.4. Given two maps f, f̃ : M2 → Λ, let F0(f ) and by F0(f̃ ) be theG0-
bundles induced on M by f and f̃ , respectively. We let j : F0(f ) → G and j̃ : F0(f̃ ) → G

be the natural maps

j : (p,A) ∈ F0(f ) �→ A ∈ G, j̃ : (p, Ã) ∈ F0(f̃ ) �→ Ã ∈ G .
The pull back of the Maurer-Cartan form of G by j and j̃ will be denoted by ω = (ωIJ ) and
by ω̃ = (ω̃IJ ), respectively. If A : U → G and Ã : U → G are local cross sections of F0(f )

and F0(f̃ ), respectively, then the g-valued 1-forms A−1dA and Ã−1dÃ will be denoted by α
and α̃.

2.2.1. Deformations of order zero. A deformation of order zero between f and f̃ is a
smooth map B : M → G such that f̃ (p) = B(p)f (p), for every p ∈ M . Thus, B induces a
bundle isomorphism B : F0(f ) → F0(f̃ ) defined by the formula

B : (p,A) ∈ F0(f ) �→ (p,B(p)A) ∈ F0(f̃ ) for any (p,A) ∈ F0(f ) .

Conversely, every bundle isomorphism between F0(f ) and F0(f̃ ) arises from a deformation
of order zero.

2.2.2. First order deformations.

THEOREM 2.5. A zero-th order deformation B : M → G of the two maps f, f̃ :
M → Λ is of first order if and only if the bundle isomorphism B : F0(f ) → F0(f̃ ) satisfies

ω̃2
0 = B∗(ω2

0) , ω̃3
0 = B∗(ω3

0) , ω̃4
0 = B∗(ω4

0) ω̃2
1 = B∗(ω2

1) ω̃3
1 = B∗(ω3

1) .(27)

PROOF. We have to show that for every local cross section A : U → G of F0(f ), the
cross section Ã = BA : p ∈ U → B(p)A(p) ∈ G of F0(f̃ ) satisfies

α̃2
0 = α2

0 , α̃3
0 = α3

0 , α̃4
0 = α4

0 α̃2
1 = α2

1 α̃3
1 = α3

1 .

Recall that B is a first order deformation if and only if the two maps f̃ and B(p)f have first
order analytic contact at p, for each point p ∈ M . The map A′ = B(p)A : U → G is a frame
along B(p)f and B is a first order deformation if and only if the maps

F ′ : q ∈ U → [A′
0|q ∧A′

1|q ] ∈ Λ, F : q ∈ U → [Ã0|q ∧ Ã1|q ] ∈ Λ
have first order analytic contact at p. From the characterization of analytic contact, it follows
that F and F ′ have first order analytic contact at p if and only if there exist ρ0(p) ∈ gl(2,R)
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and ρ1(p) ∈ T ∗(M)p ⊗ gl(2,R) such that{
(Ã0|p, Ã1|p) = (A′

0|p,A′
1|p)ρ0(p) ,

(δÃ0|p, δÃ0|p) = (δA′
0|p, δA′

1|p)ρ0(p)+ (A′
0|p,A′

1|p)ρ1(p) .
(28)

Since A′ and Ã agree at p, we then have

ρ0 = Id2×2 .(29)

Now, the structure equations of G imply

dA′
0 = αJ0A

′
J , dA

′
1 = αJ1A

′
J , dÃ0 = α̃J0 ÃJ , dÃ1 = α̃J1 ÃJ , J = 0, . . . , 5 .(30)

Substituting (30) into (28) yields

α̃2
0 |p = α2

0 |p , α̃3
0 |p = α3

0 |p , α̃4
0 |p = α4

0 |p , α̃2
1 |p = α2

1 |p , α̃3
1 |p = α3

1 |p
and

ρ1(p) =
(
α̃0

0 |p − α0
0 |p α̃0

1 |p − α0
1 |p

α̃1
0 |p − α1

0 |p α̃1
1 |p − α1

1 |p

)
.

Since p has been chosen arbitrarily, we can conclude that the equations

α̃2
0 = α2

0 , α̃3
0 = α3

0 , α̃4
0 = α4

0 , α̃2
1 = α2

1 , α̃3
1 = α3

1

are identically satisfied on U . This gives the required result. �

As an application of Theorem 2.5 we have

COROLLARY 2.6. If f, f̃ : M2 → Λ are first order deformations of each other, then
f is a Legendre immersion if and only if f̃ is a Legendre immersion.

2.2.3. Second order deformations. We begin by proving the following

THEOREM 2.7. Let f, f̃ : M → Λ be two nondegenerate Legendre immersions. Then
f and f̃ are second order deformations of each other if and only if there exists a bundle
isomorphism

B : F(f ) → F(f̃ )
such that

ω̃3
0 = B∗(ω3

0) , ω̃2
1 = B∗(ω2

1) .(31)

PROOF. Let U ⊂ M be any coordinate neighborhood of M and let A : U → G be
a canonical frame along f . We show that a first order deformation B : M2 → G is of the
second order if and only if Ã = BA : U → G is a canonical frame along f̃ such that

α̃3
0 = α3

0 , α̃2
1 = α2

1 .

From Theorem 2.5, we know that Ã is such that

α̃3
0 = α3

0 , α̃2
1 = α2

1 .(32)
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We also know that the frame fields Ã and A′ = B(p)A satisfy{
(Ã0, Ã1)|p = (A′

0, A
′
1) ,

(δÃ0, δÃ0)|p = (δA′
0, δA

′
1)|p + (A′

0, A
′
1)|pρ1 ,

(33)

where

ρ1 =
(
(α̃0

0 − α0
0)|p (α̃0

1 − α0
1)|p

(α̃1
0 − α1

0)|p (α̃1
1 − α1

1)|p

)
.

Lemma 2.2 implies that B is a second order deformation if and only if, for every p ∈ U , there
exists

ρ2 =
(
σ 0

0 σ 0
1

σ 1
0 σ 1

1

)
∈ S2(M)|p ⊗ gl(2,R)

such that

(δ2Ã0, δ
2Ã1)|p = (δ2A′

0, δ
2A′

1)|p + 2(δA′
0, δA

′
1)|pρ1 + (A′

0, A
′
1)|pρ2 .(34)

Equation (34), when written out, gives


δ2Ã0|p = δ2A′
0|p + 2δA′

0|p(α̃0
0 − α0

0)|p + δA′
1|p(α̃1

0 − α1
0)|p

+ A′
0|pσ 0

0 + A′
1|pσ 1

0 ,

δ2Ã1|p = δ2A′
1|p + 2δA′

0|p(α̃0
1 − α0

1)|p + δA′
1|p(α̃1

1 − α1
1)|p

+ A′
0|pσ 0

1 + A′
1|pσ 1

1 .

(35)

On the other hand, from the Maurer-Cartan equations of Ã and the fact that Ã|p = A′|p, we
compute {

δ2Ã0|p = γ 0
0 |pA′

0|p + γ 1
0 |pA′

1|p + γ 2
0 |pA′

2|p + γ 3
0 |pA′

3|p + γ 5
0 |pA′

5|p ,
δ2Ã1|p = γ 0

1 |pA′
0|p + γ 1

1 |pA′
1|p + γ 2

1 |pA′
2|p + γ 3

1 |pA′
3|p + γ 4

1 |pA′
4|p ,

(36)

where 


γ 0
0 = δα̃0

0 + α̃0
0 α̃

0
0 + α̃1

0 α̃
0
1 + α̃3

0 α̃
0
3 ,

γ 1
0 = δα̃1

0 + α̃0
0 α̃

1
0 + α̃1

0 α̃
0
1 + α̃3

0 α̃
1
3 ,

γ 2
0 = α̃1

0 α̃
2
1 + α̃3

0 α̃
2
3 ,

γ 3
0 = δα̃3

0 + α̃0
0 α̃

3
0 ,

γ 5
0 = α̃3

0 α̃
3
0 ,

γ 0
1 = δα̃0

1 + α̃0
1 α̃

0
0 + α̃1

1 α̃
0
1 + α̃2

1 α̃
0
2 ,

γ 1
1 = δα̃1

1 + α̃0
1 α̃

1
0 + α̃1

1 α̃
1
1 + α̃2

1 α̃
1
2 ,

γ 2
1 = δα̃2

1 + α̃1
1 α̃

2
1 ,

γ 3
1 = α̃0

1 α̃
3
0 + α̃2

1 α̃
3
2 ,

γ 4
1 = α̃2

1 α̃
2
1 .
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Using the Maurer-Cartan equations of A′, (35) can be written as{
δ2Ã′

0|p = β0
0 |pA′

0|p + β1
0 |pA′

1|p + β2
0 |pA′

2|p + β3
0 |pA′

3|p + γ 5
0 |pA′

5|p ,
δ2Ã′

1|p = β0
1 |pA′

0|p + β1
1 |pA′

1|p + β2
1 |pA′

2|p + β3
1 |pA′

3|p + β4
1 |pA′

4|p ,
(37)

where


β0
0 = (δα0

0 + α0
0α

0
0 + α1

0α
0
1 + α3

0α
0
3 + 2α0

0(α̃
0
0 − α0

0)+ 2α0
1(α̃

1
0 − α1

0)+ σ 0
0 )|p ,

β1
0 = (δα1

0 + α0
0α

1
1 + α3

0α
1
3 + 2α1

0(α̃
0
0 − α0

0)+ 2α1
1(α̃

1
0 − α1

0)+ σ 1
0 )|p ,

β2
0 = (α1

0α
2
1 + 2α2

1(α̃
1
0 − α1

0))|p ,
β3

0 = (δα3
0 + α0

0α
3
0 + 2α3

0(α̃
0
0 − α0

0))|p ,
β5

0 = (α3
0α

3
0)|p ,

β0
1 = (δα0

1 + α0
1α

0
0 + α1

1α
0
1 + α2

1α
0
2 + 2α0

0(α̃
0
1 − α0

1)+ 2α0
1(α̃

1
1 − α1

1)+ σ 0
1 )|p ,

β1
1 = (δα1

1 + α0
1α

1
0 + α1

1α
1
1 + α2

1α
1
2 + 2α1

0(α̃
0
1 − α0

1)+ 2α1
1(α̃

1
1 − α1

1)+ σ 1
1 )|p ,

β2
1 = (δα2

1 + α1
1α

2
1 + 2α2

1(α̃
1
1 − α1

1))|p ,
β3

1 = (α0
1α

3
0 + 2α3

0(α̃
0
1 − α0

1))|p ,
β4

1 = (α2
1α

2
1)|p .

Form (36), (37) and (32), it follows that B is a second order deformation if and only if


α2(α̃1
0 − α1

0) = −α1α̃3
2 ,

α1(α̃0
1 − α0

1) = α2α̃3
2 ,

α2(α̃1
1 − α1

1) = 0 ,

α1(α̃0
0 − α0

0) = 0 .

(38)

The last two equations of (38) yield

α̃0
0 = α0

0 , α̃1
1 = α1

1 .(39)

Computing the exterior derivatives of (39) and using the structure equations, we obtain

α̃1
0 ∧ α2

1 = α̃0
1 ∧ α3

0 = 0 .(40)

Differentiating the equations in (38), and using again the structure equations, we see that{
α2 ∧ (α̃1

0 − α1
0)+ α1 ∧ α̃3

2 = 0 ,

α1 ∧ (α̃0
1 − α0

1)− α2 ∧ α̃3
2 = 0 .

This implies that α̃3
2 vanishes identically, Furthermore, from the first two equations of (38)

we get

α̃1
0 − α1

0 = α̃0
1 − α0

1 = 0 .

This yields the required result. �

Taking into account (12), we have
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COROLLARY 2.8. Let f, f̃ be nondegenerate Legendre surfaces and letA be a canon-
ical frame along f . Then f, f̃ are non-trivial second order deformations of each other if and
only if there exists a normal frame Ã along f̃ such that

α1 = α̃1 , α2 = α̃2 ,(41)

α0
3 − α̃0

3 = w1α
1 , α1

2 − α̃1
2 = w2α

2 , α0
4 − α̃0

4 = −w2α
1 +w1α

2(42)

for smooth functions w1, w2 such that (w1)
2 + (w2)

2 �= 0.

REMARK 2.9. If f , f̃ are non-trivial second order deformations of each other, then
from the structure equations of the canonical frames A and Ã, it follows that the g-valued
1-form η = α̃ − α satisfies

dη + α ∧ η + η ∧ α = 0 .(43)

We can summarize the previous results in the following

THEOREM 2.10. Let f, f̃ : M2 → Λ be non-congruent, nondegenerate Legendre
immersions. Then the following statements are equivalent:

(1) f and f̃ are non-trivial second order deformations of each other.
(2) There exists a bundle isomorphism B : F(f ) → F(f̃ ) such that

ω1 = B∗(ω̃1) , ω2 = B∗(ω̃2) .

(3) f and f̃ induce the same canonical coframe on M .
(4) f and f̃ have the same quotient of cubic to quadratic forms, that is,

Ψ/Φ = Ψ̃ /Φ̃ .(44)

The equivalence of (1), (2) and (3) is a direct consequence of Theorem 2.7. As for the
equivalence with (4), if (44) holds, there exist canonical frames A and Ã along f and f̃ ,
respectively, such that α̃1 = α1, α̃2 = α2. Since f and f̃ are not congruent, this yields (42).

EXAMPLE 2.11 (Isothermic nets). Let U ⊂ R2 be a simply connected open set with
coordinates (u, v). A net is a two-parameter smooth immersion F : U → R3 satisfying Fuv ·
Fu × Fv = 0. A net F is isothermic if F is a conformal map, that is, (u, v) are both principal
and isothermal coordinates. Isothermic nets parametrize isothermic surfaces. Examples of
isothermic surfaces include quadrics, surfaces of revolution, cones, cylinders and constant
mean curvature surfaces. The main local differential invariant of an isothermic net is the
Calapso potential, that is the positive function ϕ defined by

ϕ2(du2 + dv2) = 1

4
(k1 − k2)

2dF · dF ,
where k1 and k2 are the principal curvatures. The Gauss-Codazzi equations imply that ϕ is a
solution of the Calapso-Rothe equation:

�(ϕ−1ϕuv)+ 2(ϕ2)uv = 0 .
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Denote by f : U → Λ the Legendre lift of F and let ψ = logϕ. If ψuψv �= 0, then f is
nondegenerate and the corresponding canonical coframe takes the form

α1 = 3
√
ψu(ψv)2dv , α2 = 3

√
(ψu)2ψvdu .

Let W be a smooth function such that αϕ = d(e2ψW), where αϕ is the closed 1-form

αϕ = −e2ψ
(

1

2
(e−2ψ�ψ)u + 2ψu(1 + e−2ψ�ψ)

)
du

+ e2ψ
(

1

2
(e−2ψ�ψ)v + 2ψv(1 + e−2ψ�ψ)

)
dv .

The Calapso potential and the function W give a complete set of invariants for the isothermic
net with respect to the conformal group [2, 25], that is, ϕ andW determine F up to a conformal
transformation. One of the most important features of isothermic nets is the existence of a
spectral transformation. This transformation was independently discovered by Calapso [7, 8]
and Bianchi [4], who introduced it as the T -transformation. Given a real constantm ∈ R , the
Tm-transform Tm(F ) of F can be characterized, up to conformal transformations, by

ϕTm(F ) = ϕF , WTm(F ) = WF +me−2ψ .

Thus the Legendre lifts of the T -transforms of F have the same canonical coframe and are not
congruent (see Remark 4.2 and (51)). This shows that the Legendre lifts of isothermic nets
are deformable.

EXAMPLE 2.12 (L-Isothermic nets). Another class of deformable surfaces is given by
the Legendre lifts of L-isothermic nets. A net F : U → R3 is said to be L-isothermic if the
Gauss map n : U → S2 is conformal with respect to the third fundamental form, that is,
(u, v) are principal coordinates which are isothermal with respect to the third fundamental
form. L-isothermic nets parametrize the class of L-isothermic surfaces. Examples include
minimal surfaces in R3 and molding surfaces [23]. The study of L-isothermic surfaces goes
back to the work of Blaschke and presents many analogies with that of isothermic surfaces.
For instance, L-isothermic surfaces admit a spectral transformation which is the analogue of
the T -transformation for isothermic surfaces [21]. We briefly recall some basic properties of
L-isothermic nets and show that their Legendre lifts are deformable. The Blaschke potential
of F is the positive function ϕ defined by

ϕ2(du2 + dv2) = 1

4

(
1

k1
− 1

k2

)2

dn · dn .

In this case the compatibility condition arising from the Gauss-Codazzi equations is the Bla-
schke equation

�

(
1

ϕ
ϕuv

)
= 0 .(45)
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Let f be the Legendre lift of F and ψ = logϕ. In the nondegenerate case, which amounts to
ψuψv �= 0, the canonical coframe of f can be written as

α1 = 3
√
(ψu)2ψvdu , α2 = 3

√
ψu(ψv)2dv .

In addition to the Blaschke potential, the other local differential invariant of F is a smooth
function W defined by αϕ = d

(
e2ψW

)
, where

αϕ = −e2ψ
(

1

2
(e−2ψ�ψ)u + 2ψu(e

−2ψ�ψ)

)
du

+ e2ψ
(

1

2
(e−2ψ�ψ)v + 2ψv(e−2ψ�ψ)

)
dv .

Given m ∈ R , the Tm-transform Tm(F ) of F can be characterized (up to Laguerre contact
transformations) by

ϕTm(F ) = ϕF , WTm(F ) = WF +me−2ψ .

The Legendre lifts of the T -transforms of F have then the same canonical coframe and are
not congruent (see Remark 4.2 and (51)), from which follows that the Legendre lift of an
L-isothermic net is deformable.

3. Infinitesimal deformations and deformable surfaces. Infinitesimal deformations.
If f and f̃ are non-trivial deformations of each other, then η = α̃ − α never vanishes and,
according to (43),

δ|U := AηA−1(46)

is a closed 1-form with values in g, for every canonical frame A along f . Moreover,

D|U := [ÃA−1](47)

defines a smooth mapD : M2 → G/Z2 such that

D−1dD = δ .

On the other hand, let f : M2 → Λ be a nondegenerate Legendre immersion and, define
η(w1, w2) ∈ Ω1(U)⊗ g by

η(w1, w2) =




0 0 0 w1α
1 −w2α

1 +w1α
2 0

0 0 w2α
2 0 0 w2α

1 −w1α
2

0 0 0 0 w2α
2 0

0 0 0 0 0 w1α
1

0 0 0 0 0 0
0 0 0 0 0 0



,(48)

for smooth functions w1, w2. Note that η takes values in the abelian subalgebra

a = {T ∈ g | T (ε0) = T (ε1) = 0, T (ε2) ∝ ε1, T (ε3) ∝ ε0} .
From (43), it follows that the 1-form AηA−1 ∈ Ω1(U) ⊗ g is independent of A. Thus, there
exists δ ∈ Ω1(M)⊗ g such that δ|U = AηA−1.
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DEFINITION 3.1 (Infinitesimal deformations). We say that η is an infinitesimal defor-
mation of f if δ is closed. Let ∆f denote the set of infinitesimal deformations of f .

We are now in a position to characterize the Legendre surfaces which admit non-trivial
deformations in terms of infinitesimal deformations.

THEOREM 3.2. Let M2 be simply connected. Then a nondegenerate Legendre immer-
sion f : M2 → Λ admits non-trivial deformations if and only if ∆f �= 0.

PROOF. If f̃ is a non-trivial deformation of f , then η = α̃ − α defines a non-zero
infinitesimal deformation. Conversely, let η be a non zero infinitesimal deformation. Then,
δ ∈ Ω1(M)⊗g is a non-zero closed 1-form and there existsD : M → G such thatD−1dD =
δ. Note that the map f̃ : p ∈ M �→ D(p) · f (p) ∈ Λ is a non-trivial deformation of f . �

REMARK 3.3. Note that for every non-zero η ∈ ∆f there exists a non-trivial defor-
mation f̃ which is uniquely defined by f and the corresponding infinitesimal deformation,
up to the action of G. Moreover, as ∆f is a real vector space, given η ∈ ∆f and r ∈ R , rη
is another infinitesimal deformation. Therefore, the deformations of f arise in one-parameter
families. In other words, deformable surfaces do have a spectral transformation. This sug-
gests the existence of a Bäcklund transformation for deformable surfaces.

Infinitesimal deformations and parallel sections. Let f : M2 → Λ be a nondegenerate
Legendre immersion and consider the gl(3,R)-valued 1-form

σ =



−2(2q1α
1 − q2α

2) 0 −α1

0 −2(q1α
1 − 2q2α

2) α2

2(p2 − 1)α2 −2(p1 − 1)α1 −3(q1α
1 − q2α

2)


 .(49)

DEFINITION 3.4 (σ -connection). The form (49) defines a linear connection

Dσw := dw + σw

on the trivial bundleM2 × R3, for each smooth function w : M2 → R3. Dσ is referred to as
the σ -connection of f . By Pf we denote the vector space consisting of all parallel sections
of the σ -connection.

A simple computation shows that the curvature formΩσ of the σ -connection is given by

Ωσ =

 0 0 0

0 0 0
2∂1p2 2∂2p1 3(p2 − p1)


α1 ∧ α2 ,(50)

where for a smooth function g : M → R we write dg = ∂1gα1 + ∂2gα2.
For every w = (w1, w2, w3) : M2 → R3, let η(w1, w2) be defined by (48).

PROPOSITION 3.5. A nondegenerate Legendre immersion f is deformable if and only
if there exists a parallel section of the σ -connection. Moreover, the mapping

w ∈ Pf → η(w1, w2) ∈ ∆f
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is an isomorphism of vector spaces.

PROOF. Let f̃ be a deformation of f . Then α1 = α̃1, α2 = α̃2 and

α0
3 − α̃0

3 = w1α
1 , α1

2 − α̃1
2 = w2α

2 , α0
4 − α̃0

4 = −w2α
1 +w1α

2

for smooth functions w1, w2 such that (w1)
2 + (w2)

2 �= 0. Differentiating and using the
structure equations, we get

d(w1α
1) = −α0

0 ∧w1α
1 ,

d(w2α
2) = −w2α

1
1 ∧ α2 ,

d(−w2α
1 + w1α

2) = −(α0
0 + α1

1) ∧ (−w1α
1 +w1α

2) ,

which imply

(dw1 + 2w1α
0
0) ∧ α1 = 0 ,

(dw2 + 2w2α
1
1) ∧ α2 = 0 ,

(dw1 + 2w1α
0
0) ∧ α2 − (dw2 + 2w2α

1
1) ∧ α1 = 0 .

By Cartan’s Lemma, there exists a smooth function w3 : M2 → R such that

dw1 = −2w1α
0
0 +w3α

1 , dw2 = −2w2α
1
1 −w3α

2 ,

that is,

dw1 − 2w1(2q1α
1 − q2α

2)−w3α
1 = 0 ,

dw2 − 2w2(q1α
1 − 2q2α

2)+w3α
2 = 0 .

Taking the exterior derivative of these equations yields

dw3 + 2(p2 − 1)α2w1 − 2(p1 − 1)α1w2 − 3(q1α
1 − q2α

2)w3 = 0 ,

which shows that (w1, w2, w3) is a parallel cross section of the σ -connection.
The converse follows by observing that η(w1, w2) defines an infinitesimal deformation

if w = (w1, w2, w3) is a parallel section. �

REMARK 3.6. Nondegenerate deformable Legendre surfaces may be classified in
terms of the dimension of ∆f . For a generic f the space ∆f is one-dimensional. It is not too
difficult to show that surfaces with a three-parameter family of deformations can be generi-
cally obtained as deformations of the Legendre lifts of molding surfaces in R3. It is not at
all clear if there exist Legendre surfaces with a two-dimensional family of deformations. But,
if they exist, then they can be reconstructed from the integral manifolds of a Pfaffian system
with empty complex characteristic variety. Thus, this class is either empty, or it depends on a
finite number of parameters.

4. Examples.

EXAMPLE 4.1 (Generic deformations). Let f , f̃ be deformations of each other and
let η be the corresponding infinitesimal deformation. According to the notation of Corollary
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2.8, we say that the deformation is generic if w1w2 is nowhere vanishing. In this case, there
exist local parameters (u, v) on M such that the canonical coframe takes the form

α1 = 3
√
(ψu)2ψvdu , α2 = 3

√
ψu(ψv)2dv ,

where ψ : M2 → R is a smooth function. The T -transforms of isothermic and L-isothermic
nets are examples of generic deformations.

REMARK 4.2. In the case of an isothermic, respectively, L-isothermic surface, eψ is
the Calapso, respectively, the Blaschke potential. This can be seen by applying the reduction
procedure recalled in Section 1 to their respective conformal and Laguerre canonical frames.
For this we need to assume the nondegeneracy condition ψu �= 0, ψv �= 0.

A direct computation shows that the σ -connection σ = (σ ba ) is given by

σ 1
2 = σ 2

1 = 0 , σ 1
3 = −α1 = − 3

√
(ψu)2ψvdu , σ 2

3 = α2 = 3
√
ψu(ψv)2dv ,

and 


σ 1
1 = 4

3

(
ψuu

ψu
+ 2ψuv

ψv

)
du+ 2

3

(
2ψuv
ψu

+ ψvv

ψv

)
dv

σ 2
2 = 2

3

(
ψuu

ψu
+ 2ψuv

ψv

)
du+ 4

3

(
2ψuv
ψu

+ ψvv

ψv

)
dv ,

σ 3
1 = − 2

3
√
(ψu)2ψv

(
ψuvv

ψv
− ψvvψuv

(ψv)2

)
dv ,

σ 3
2 = 2

3
√
ψu(ψv)2

(
ψuuv

ψu
− ψuuψuv

(ψu)2

)
du,

σ 3
3 =

(
ψuu

ψu
+ 2ψuv

ψv

)
du+

(
2ψuv
ψu

+ ψvv

ψv

)
dv

It is a computational matter to verify that the parallel section w ∈ Pf associated to η is given
by

w = ( 3
√
(ψu)−4(ψv)−2,− 3

√
(ψu)−2(ψv)−4, 2(ψu)−2(ψv)

−2ψuv)
t .(51)

REMARK 4.3. Note that w1, w2 �= 0, which characterizes such surfaces. Moreover,
in the case of isothermic and L-isothermic nets, w originates the one-parameter family of
non-trivial deformations considered in Examples 2.11 and 2.12.

EXAMPLE 4.4 (Special deformations). A deformation is said to be special if w1w2

vanishes identically. Deformable surfaces which admit a special deformation play the role
of the R0 surfaces in projective differential geometry. Let w ∈ Pf be the parallel section
associated to the deformation. Then w1w2 and w3 vanish identically. Two cases may occur:
either w1 = 0, or else w2 = 0. Without loss of generality, we may assume thatw2 = 0. From
the structure equations of the canonical frame, it follows that f admits a special deformation
with w2 = 0 if and only if p2 = 1. The degree of generality of this class of Legendre
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immersions will be clear in the last section; we will see that they are rather special. Notice
that on M2 there exist local parameters (u, v) with respect to which the canonical coframe is
given by

α1 = ψ2/3du , α2 = ψ1/3dv

for a smooth function ψ such that w1 = ±ψ−2/3.

EXAMPLE 4.5 (Legendre surfaces with 3-parameter families of deformations). In this
example we consider the Legendre immersions with flat σ -connection. This example has been
discussed by Ferapontov in [14] (see also Finikov [15]). From (50) we see thatΩσ = 0 if and
only if p1 = p2 = c, for a constant c. According to Remark 1.4, we have

PROPOSITION 4.6. The 3-web defined by the canonical coframe is flat if and only if
p1 = p2.

REMARK 4.7. From this we infer that deformable diagonally cyclidic surfaces are
characterized by having p1 = p2 = const.

Since the web-connection is flat, then there exist local coordinates (u, v) such that

α1 = eψdu , α2 = eψdv ,(52)

where ψ is a smooth function. From this we see that

q1 = −ψue−ψ , q2 = ψve
−ψ .(53)

This implies {
α0

0 = 2ψudu+ ψvdv ,

α1
1 = ψudu+ 2ψvdv .

(54)

From the structure equation we deduce that ψ is a solution of the Liouville equation

ψuv = (1 − c)e2ψ .(55)

The other compatibility conditions arising from the structure equations are:

dα1

2 = −α1
1 ∧ α1

2 ,

dα0
3 = −α0

0 ∧ α0
3 ,

dα0
4 = −(α0

0 + α1
1) ∧ α0

4 ,

(56)

where 

α0

3 = Adu+ ceψdv ,

α1
2 = ceψdu+ Bdv ,

α0
4 = −Bdu+ Adv ,

(57)
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for two suitable smooth functions A,B (essentially the invariant r1 and r2). It is now a com-
putational matter to verify that (56) and (57) can be written as follows:


Av = −Aψv + 3ceψψu ,

Bu = −Bψu + 3ceψψv ,

Au + Bv = −3Aψu − 3Bψv .

(58)

We may rewrite (58) in the form{
dA = (R − 3Aψu)du+ (3ceψψu − Aψu)dv ,

dB = (3ceψψv − Bψu)du− (R + 3Bψv)dv ,
(59)

where R is a suitable smooth function. Differentiating (59), we get{
Ru = −Rψu − 2(1 − c)e2ψB − 3ceψ(ψvv + 4ψ2

v ) ,

Rv = −Rψv + 2(1 − c)e2ψA+ 3ceψ(ψuu + 4ψ2
u) .

(60)

The compatibility conditions of this system imply

3ceψ(ψuuu + ψvvv + 10ψuψuu + 10ψvψvv + 8(ψ3
u + ψ3

v )) = 0 .(61)

Two cases may occur: either c = 0, or c �= 0. In the first case the only compatibility condition
is the Liouville equation, which may be viewed as the soliton equation of this class of surfaces;
its solutions depend on two arbitrary functions in one variable. In fact, the general solutions
of the Liouville equation are of the form


Φ2 = 1

(1 − c)

λ′µ̇
(λ+ µ)2

, if c �= 1 ,

Φ2 = λ′µ̇ , if c = 1 ,

(62)

where Φ = eψ , λ is a function of the variable u, and µ is a function of the variable v. Thus,
if c �= 0, it follows that ψ is a solution of the overdetermined system{

ψuuu + ψvvv + 10ψuψuu + 10ψvψvv + 8(ψ3
u + ψ3

v ) = 0 ,

ψuv = (1 − c)e2ψ .
(63)

If we use the potential Φ = eψ , then (63) means that Φ2 is a function of the form (62) such
that (

1

Φ2 (Φ
2(Φ2)u)u

)
u

+
(

1

Φ2 (Φ
2(Φ2)v)v

)
v

= 0 .(64)

Let first examine the case c = 1. We take λ and µ as a new variable and we think of λ′ and
µ̇ as a functions of λ and µ, respectively. With respect to these new coordinates the equation
(64) is equivalent to
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∂3
λλλ(λ

′3)+ ∂3
µµµ(µ̇

3) = 0 .(65)

This implies that λ and µ satisfy the ODE


(
dλ

du

)3

= P(λ) ,

(
dµ

dv

)3

= Q(µ) ,

(66)

where P andQ are polynomials of order ≤ 3 with the opposite leading coefficients. One may
proceed in a similar fashion also in the general case. Substituting

Φ2 = 1

1 − c

λ′µ̇
(λ+ µ)2

(67)

in (65), we obtain

1

3
(λ+ µ)3

(
d3λ′3

dλ3 + d3µ̇3

dµ3

)
− 4(λ+ µ)2

(
d2λ′3

dλ2 + d2µ̇3

dµ2

)

+ 20(λ+ µ)

(
dλ′3

dλ
+ dµ̇3

dµ

)
− 40(λ′3 + µ̇3) = 0 .

(68)

Applying the operator ∂6
λλλµµµ to (68), we get

d6λ′3

dλ6
+ d6µ̇3

dµ6
= 0 .(69)

This implies that λ′3 and µ̇3 are polynomials P(λ) and Q(µ) in λ and µ, respectively, of
order ≤ 6. Such polynomials satisfy (68) if and only if Q(T ) = −P(−T ). Thus, λ and µ
satisfy the ODE 



(
dλ

du

)3

= P(λ) ,

(
dµ

dv

)3

= −P(−µ) ,
(70)

where P is a polynomial of degree ≤ 6.
The 3-parameter family of infinitesimal deformations. We finish this example by

discussing the 3-parameter family of infinitesimal deformations of such surfaces. The σ -
connection is given by

σ =



4ψudu+ 2ψvdv 0 −eψdu
0 2ψudu+ 4ψvdv eψdv

2(c− 1)eψdv −2(c − 1)eψdu 3dψ


 ,(71)
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where the potential function is given either by

e2ψ = λ′µ̇ ,(72)

or by

e2ψ = 1

(1 − c)

λ′µ̇
(λ+ µ)2

.(73)

It is now a computational matter to verify that the parallel sections of the σ -connection are
given by:

(1) If c = 1 (i.e., e2ψ = λ′µ̇), then

s0e
−2ψ


 1/λ′

−1/µ̇
0


 + s1e

−2ψ


 λ/λ′

−µ/µ̇
e−ψ


 + s2e

−2ψµλ


 λ/λ′

−µ/µ̇
2e−ψ


 ,(74)

where s0, s1 and s3 are real constants.
(2) If c �= 1 (i.e., e2ψ = 1/(1 − c) · λ′µ̇/(λ+ µ)2), we have

s0e
−2ψ




−1/λ′
1/µ̇

2e−ψ

λ+ µ


 + s1e

−2ψ




λ/λ′
µ/µ̇

e−ψ(µ− λ)

λ+ µ


 + s2e

−2ψ




λ2/λ′
−µ2/µ̇

2µλe−ψ

λ+ µ


 ,(75)

where s0, s1 and s2 are real constants.

5. The differential system of a deformation. It was shown in [18] that the problems
of k-th order deformation are equivalent to solving certain exterior differential systems on ap-
propriate spaces. Naturally, for each concrete homogeneous space there is a specific problem
to solve. We shall derive this result in the case at hand.

Let P = (G/Z2) × R6 × R3 and denote by (q1, q2, p1, p2, r1, r2) and (w1, w2, w3)

the coordinates on R6 and R3, respectively. Let (ωIJ ) be the Maurer-Cartan forms on G/Z2

and put α1 = ω3
0, α2 = ω2

1. On P , we consider the exterior differential 1-forms η1, . . . , η16

defined by 

η1 = ω4

0 , η2 = ω2
0 , η3 = ω3

1 ,

η4 = ω3
2 , η5 = ω1

0 − α2 , η6 = ω0
1 − α1 ,

η7 = ω0
2 , η8 = ω1

3 ,

(76)

{
η9 = ω0

0 + 2q1α
1 − q2α

2 ,

η10 = ω1
1 + q1α

1 − 2q2α
2 ,

(77)
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η11 = ω0

3 − r1α
1 − p2α

2 ,

η12 = ω1
2 − p1α

1 − r2α
2 ,

η13 = ω0
4 + r2α

1 − r1α
2 ,

(78)



η14 = dw1 − 2w1(2q1α

1 − q2α
2)− w3α

1 ,

η15 = dw2 − 2w2(q1α
1 − 2q2α

2)+ w3α
2 ,

η16 = dw3 + 2w1(p2 − 1)α2 − 2w2(p1 − 1)α1 − 3w3(q1α
1 − q2α

2).

(79)

DEFINITION 5.1. Let (I, α1 ∧ α2) be the exterior differential system on P generated
by η1, . . . , η16 with the independence condition α1 ∧ α2 �= 0. We call (I, α1 ∧ α2) the
differential system of a deformation.

REMARK 5.2. The integral manifolds of (I, α1 ∧ α2) are 2-dimensional immersed
surfaces ([A], q, p, r,w) : M → P such that

(1) f = [A0 ∧A1] : M → Λ is a nondegenerate Legendre immersion,
(2) [A] : M → G/Z2 is the canonical frame along M ,
(3) q, p, r : M → R2 × R2 × R2 are the invariant functions of f ,
(4) w : M → R3 is a parallel section of the σ -connection of f .

Thus, the deformations of a nondegenerate Legendre immersion may be regarded as the inte-
gral manifolds of the differential system (I, α1 ∧ α2).

From the Maurer-Cartan equations we obtain the quadratic equations of the system,
which are (modulo I)

dα1 ≡ −q2α
1 ∧ α2 , dα2 ≡ −q1α

1 ∧ α2 ,(80)

dη1 ≡ · · · ≡ dη8 ≡ 0 ,(81)

{
dη9 ≡ 2dq1 ∧ α1 − dq2 ∧ α2 + (−1 + p2 − q1q2)α

1 ∧ α2 ,

dη10 ≡ dq1 ∧ α1 − 2dq2 ∧ α2 + (1 − p1 + q1q2)α
1 ∧ α2 ,

(82)



dη11 ≡ −dr1 ∧ α1 − dp2 ∧ α2 + (2r1q2 + 3q1p2)α

1 ∧ α2 ,

dη12 ≡ −dp1 ∧ α1 − dr2 ∧ α2 + (3p1q2 + 2r2q1)α
1 ∧ α2 ,

dη13 ≡ dr2 ∧ α1 − dr1 ∧ α2 + 4(q1r1 − q2r2)α
1 ∧ α2 ,

(83)

dη14 ≡ −2w1dη
9 , dη15 ≡ −2w2dη

10 ,(84)

dη16 ≡ −w3(dη
9 + dη10)+ 2w1dp2 ∧ α2 − 2w2dp1 ∧ α1

+3w3(p2 − p1)α
1 ∧ α2 .

(85)
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From this, we see that the differential ideal I is algebraically generated by the 1-forms
η1, . . . , η16 and by the differential 2-forms



Ω1 = 2dq1 ∧ α1 − dq2 ∧ α2 + (−1 + p2 − q1q2)α
1 ∧ α2 ,

Ω2 = dq1 ∧ α1 − 2dq2 ∧ α2 + (1 − p1 + q1q2)α
1 ∧ α2 ,

Ω3 = dr1 ∧ α1 + dp2 ∧ α2 − (2r1q2 + 3q1p2)α
1 ∧ α2 ,

Ω4 = dp1 ∧ α1 + dr2 ∧ α2 − (3p1q2 + 2r2q1)α
1 ∧ α2 ,

Ω5 = dr2 ∧ α1 − dr1 ∧ α2 + 4(q1r1 − q2r2)α
1 ∧ α2 ,

Ω6 = 2w1dp2 ∧ α2 − 2w2dp1 ∧ α1 + 3w3(p2 − p1)α
1 ∧ α2 .

(86)

REMARK 5.3. Notice that the differential system (I, α1 ∧ α2) is quasi-linear.

To discuss the involutivity of the system we compute the polar spaces of 1-dimensional
integral elements. On P , we consider the coframe

(α1, α2, η1, . . . , η16, dq1, dq2, dp1, dp2, dr1, dr2)(87)

and its dual frame field(
∂

∂α1 ,
∂

∂α2 ,
∂

∂η1 , . . . ,
∂

∂η16 ,
∂

∂q1
,
∂

∂q2
,
∂

∂p1
,
∂

∂p2
,
∂

∂r1
,
∂

∂r1

)
.(88)

The 1-dimensional integral elements E of the system are of the form

E = [V (a, b, c, d)] , V (a, b, c, d) = aj
∂

∂αj
+ bj

∂

∂qj
+ cj

∂

∂pj
+ dj

∂

∂rj
.(89)

Thus, the manifold of 1-dimensional integral elements V1 ∼= P × RP7. A 1-dimensional
integral element is admissible if and only if (a1)

2 + (a2)
2 �= 0. The polar equations of a given

E ∈ V1 are

ηα = 0 , α = 1, . . . , 16(90)

and

iV Ω
β = 0 , β = 1, . . . , 6 ,(91)

which read

2a1dq1 − a2dq2 = [a2(1 − p2 + q1q2)+ 2b1)]α1 + [a1(p2 − q1q2 − 1)− b2]α2 ,

a1dq1 − 2a2dq2 = [b1 − a2(1 − p1 + q1q2)]α1 + [a1(1 − p1 + q1q2)− 2b2]α2 ,

a1dr1 + a2dp2 = [d1 + a2(2r1q2 + 3q1p2)]α1 + [c2 − a1(2r1q2 + 3q1p2)]α2 ,

a1dp1 + a2dr2 = [c1 + a2(3p1q2 + 2r2q1)]α1 + [d2 − a1(3p1q2 + 2r2q1)]α2 ,

a2dr1 − a1dr2 = [4a2(q1r1 − q2r2)− d2]α1 + [d1 − 4a1(q1r1 − q2r2)]α2 ,

w2a1dp1 −w1a2dp2 =
[
w2c1 − 3

2
a2w3(p1 − p2)

]
α1 +

[
3

2
a1w3(p1 − p2)−w1c2

]
α2 .
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Therefore, if a1a2(w1(a1)
2 − w2(a2)

2) �= 0, the polar equations are linearly independent
and the dimension of the polar space H(E) of E is 2. Thus H(E) is the only 2-dimensional
integral element that contains E. This shows that the system is in involution and that the
general integral submanifolds depend on six functions in one variable.
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