The work focuses on the Γ-convergence problem and the convergence of minimizers for a functional defined in a periodic perforated medium and combining the bulk (volume distributed) energy and the surface energy distributed on the perforation boundary. It is assumed that the mean value of surface energy at each level set of test function is equal to zero. Under natural coercivity and p-growth assumptions on the bulk energy, and the assumption that the surface energy satisfies p-growth upper bound, we show that the studied functional has a nontrivial Γ-limit and the corresponding variational problem admits homogenization.

Gamma-convergence approach to variational problems in perforated domains with Fourier boundary conditions / PIATNITSKI A., L; CHIADO' PIAT, Valeria. - In: ESAIM. COCV. - ISSN 1292-8119. - STAMPA. - 16:1(2010), pp. 148-175. [10.1051/cocv:2008073]

Gamma-convergence approach to variational problems in perforated domains with Fourier boundary conditions

CHIADO' PIAT, Valeria
2010

Abstract

The work focuses on the Γ-convergence problem and the convergence of minimizers for a functional defined in a periodic perforated medium and combining the bulk (volume distributed) energy and the surface energy distributed on the perforation boundary. It is assumed that the mean value of surface energy at each level set of test function is equal to zero. Under natural coercivity and p-growth assumptions on the bulk energy, and the assumption that the surface energy satisfies p-growth upper bound, we show that the studied functional has a nontrivial Γ-limit and the corresponding variational problem admits homogenization.
File in questo prodotto:
File Dimensione Formato  
cocv0850.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 283.3 kB
Formato Adobe PDF
283.3 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1828610
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo