In this paper, we introduce a simple adaptive wavelet element algorithm similar to the Cohen–Dahmen–DeVore algorithm [A. Cohen, W. Dahmen, and R. DeVore, Math. Comp., 70 (2001), pp. 27–75]. The main difference is that we do not assume knowledge of the many constants appearing therein. The algorithm is easy to implement and applicable to a large class of problems in fairly general domains. The efficiency is illustrated by several two-dimensional numerical examples and compared with an adaptive finite element method.
An adaptive WEM algorithm for solving elliptic boundary value problems in fairly general domains / BERRONE S.; KOZUBEK T. - In: SIAM JOURNAL ON SCIENTIFIC COMPUTING. - ISSN 1064-8275. - 28:6(2006), pp. 2114-2138. [10.1137/04062014X]
Titolo: | An adaptive WEM algorithm for solving elliptic boundary value problems in fairly general domains | |
Autori: | ||
Data di pubblicazione: | 2006 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1137/04062014X | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
SISC2006.pdf | 2. Post-print / Author's Accepted Manuscript | PUBBLICO - Tutti i diritti riservati | Visibile a tuttiVisualizza/Apri |
http://hdl.handle.net/11583/1634940