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AN ADAPTIVE WEM ALGORITHM FOR SOLVING ELLIPTIC
BOUNDARY VALUE PROBLEMS IN FAIRLY GENERAL DOMAINS∗

S. BERRONE† AND T. KOZUBEK‡

Abstract. In this paper, we introduce a simple adaptive wavelet element algorithm similar to
the Cohen–Dahmen–DeVore algorithm [A. Cohen, W. Dahmen, and R. DeVore, Math. Comp., 70
(2001), pp. 27–75]. The main difference is that we do not assume knowledge of the many constants
appearing therein. The algorithm is easy to implement and applicable to a large class of problems in
fairly general domains. The efficiency is illustrated by several two-dimensional numerical examples
and compared with an adaptive finite element method.
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1. Introduction. Wavelets have become an efficient tool for solving many prob-
lems arising in theory and in practice. Let us mention, for example, signal analysis,
compression of information, geometry representation, and numerical analysis. In this
paper we deal with wavelets used for the adaptive solution of elliptic boundary value
problems in R

d, d = 1, 2, 3. Adaptivity is a key ingredient in modern numerical com-
putation which helps to improve significantly the performance of the method. When
dealing with the finite element method (FEM), adaptivity occurs in the context of grid
refinement, in contrast to the function selection used in wavelet discretization meth-
ods such as the wavelet element method (WEM). A detailed discussion of the adaptive
(nonlinear) refinement advantages with respect to the uniform (linear) refinement can
be found in [12, 23].

We introduce an adaptive WEM algorithm applicable to a large class of problems
defined in fairly general domains. The key ideas of our algorithm follow the funda-
mental Cohen–Dahmen–DeVore approach to wavelet adaptivity for PDEs [2, 12, 13],
but we do not assume knowledge of the many constants appearing therein. Industrial
applications of the Cohen–Dahmen–DeVore algorithm in all its aspects still seem to
be quite hard. Here we propose an adaptive algorithm based on the same ideas, but
whose practical application is easier. For the proposed algorithm we do not provide
any proof of either convergence or optimality, as in [12]. Our goal is rather (i) to eas-
ily employ the standard solvers, such as CG, BiCG, GMRES, in order to improve the
actual approximation of the coefficient vector; (ii) to easily control the solution process
by a small set of parameters; (iii) to extend the applicability of the adaptive algorithm
to more realistic problems in fairly general geometrical domains Ω in R

d; (iv) to intro-

∗Received by the editors October 24, 2005; accepted for publication (in revised form) May 31,
2006; published electronically December 5, 2006. This research was supported by the European
project Breaking Complexity, HPRN-CT-2002-00286, by grants IAA1075402 and 1ET400300415 of
the Grant Agency of the Czech Academy of Sciences, and by the Italian funds Miur PRIN 2004
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duce an approximate computation of the integrals for computing the nonzero entries
of the stiffness matrix A and the right-hand side vector f and to possibly minimize
their number.

To construct multiresolution systems on fairly general domains in R
d, we use a

WEM construction described in [10, 11, 4], but the proposed algorithm itself does not
depend on the type of the used wavelet basis [20, 26] nor on the WEM construction
[22, 14, 10]. The key point of the WEM is the splitting of the domain into subdo-
mains in such a way that each of them can be mapped to a reference hypercube.
Bases on the reference domain in R

d are constructed by the tensor product of scaling
and wavelet functions defined on the unit interval. In our implementation wavelet
bases on the interval are formed by biorthogonal B-spline wavelets with optimal lo-
calization introduced in [26]. To obtain a globally continuous biorthogonal wavelet
basis, one has to enforce matching conditions across interelement boundaries. The
construction enables one to fulfill additional important features such as symmetry,
vanishing moments, and a minimal support.

Problem setting and general requirements on the wavelet bases are briefly men-
tioned in section 2. For space reasons we assume some knowledge of these aspects,
referring for more details to [16, 17, 18] and the references therein. In section 3, we
introduce the adaptive WEM algorithm and describe all ingredients in details. In
section 4, we illustrate the applicability of this adaptive WEM method to quite gen-
eral situations; some numerical examples involving singularities and two-dimensional
complex geometries requiring mapping and matching are considered. Conclusions are
summarized in section 5. Finally, in the appendix, we compare some results obtained
by the proposed algorithm with results obtained using a well-assessed adaptive finite
element code [30, 1]. This comparison does not attempt to claim that one method
outperforms the other, but aims at comparing some aspects of the solution process of
the two adaptive methods.

2. General settings. In this section, we introduce a class of elliptic boundary
value problems which are the focus of our interest. Finally, using such basis, we show
how to transform the problem into an equivalent l2-problem.

2.1. Problem setting. Let Ω be a bounded domain in R
d, d = 1, 2, 3, with the

Lipschitz boundary ∂Ω. Further, let H := H(Ω) be a Hilbert space and A : H → H ′

an elliptic operator of the second order, where H ′ is a dual to H and H ↪→ L2(Ω) ↪→
H ′. Due to simplicity of our presentation we will be concerned with the following
abstract pure Dirichlet boundary value problem: for given f ∈ H ′ := H−1(Ω) find
u ∈ H := H1

0 (Ω) such that

{
Au = f in Ω,

u = 0 on ∂Ω.
(2.1)

The corresponding weak form to (2.1) is

⎧⎨
⎩

Find u ∈ H such that

a(u, v) = 〈f, v〉 ∀v ∈ H,
(2.2)

where a(. , .) : H×H → R is the continuous bilinear form defined by a(u, v) := 〈Au, v〉
and 〈. , .〉 denotes the standard duality pairing between H and H ′.
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We assume that problem (2.2) is well-posed, i.e., there are positive finite constants
cA, CA such that cA‖v‖H ≤ ‖Av‖H′ ≤ CA‖v‖H , v ∈ H. This immediately implies
the existence of a unique solution to (2.2).

2.2. General requirements on the wavelet bases. We are interested in solv-
ing problem (2.2) using the adaptive wavelet element approach, i.e., a Galerkin method
with a suitably chosen wavelet basis for H in ψ = {ψλ : λ ∈ J }, where J is an
infinite index set, and an adaptive procedure for the basis functions selection. In the
following, we list the relevant properties of the wavelet basis ψ.

For any v ∈ L2(Ω) we have a unique expansion v =
∑

λ∈J vλψλ = vTψ which
induces an isomorphism between H and l2. More precisely, there is a scaling diagonal
matrix D = diag(dλ : λ ∈ J ) and positive constants cψ, Cψ such that cψ‖v‖l2 ≤
‖vT

D
−1ψ‖H ≤ Cψ‖v‖l2 . For example, when H is the Sobolev space Ht(I) with

I = [0, 1], a canonical choice of dλ is dλ = 2t|λ|; in general for H = H1(Ω) we choose
dλ =

√
a(ψλ, ψλ) [19, 21, 27, 28]. We assume that basis functions have vanishing

moments and are locally supported with diam (suppψλ) ∼ 2−|λ|, where λ ∈ J and |λ|
is the level of the basis function ψλ (see [20, 26, 10]).

2.3. An equivalent l2-problem. Given a basis with the mentioned proper-
ties, we can transform problem (2.2) over a function space H into an algebraic sys-
tem of equations over the corresponding sequence space. More precisely, we ob-
tain the following equivalent l2-problem: Ax = f , where A = D

−1〈Aψ,ψ〉D−1 =(
d−1
λ d−1

μ 〈Aψμ, ψλ〉
)
λ,μ∈J is an infinite matrix and f = D

−1〈f,ψ〉 =
(
d−1
λ 〈f, ψλ〉

)
λ∈J

is an infinite vector. It is well known [12, 13, 16, 18] that if u = xT
D

−1ψ is the scaled
wavelet representation of the solution to (2.2), the problem Ax = f is an equivalent
problem in l2 to Au = f . In addition, there are positive constants cA, CA such that
cA‖v‖l2 ≤ ‖Av‖l2 ≤ CA‖v‖l2 , v ∈ l2, with lower and upper estimates cA ≥ c2ψcA and

CA ≤ C2
ψCA, respectively.

Our infinitely dimensional problem Ax = f can be now approximated by a finite-
dimensional approximation

AΛ×ΛxΛ = fΛ,(2.3)

where fΛ =
(
d−1
λ 〈f, ψλ〉

)
λ∈Λ

, AΛ×Λ =
(
d−1
λ d−1

μ 〈Aψμ, ψλ〉
)
λ,μ∈Λ

, Λ ⊂ J , and the

approximation of the solution u is given by

uΛ =
∑
μ∈Λ

d−1
μ xμψμ = xT

ΛD
−1
Λ ψΛ.(2.4)

With A positive definite, all finite sections AΛ×Λ have ‖AΛ×Λ‖2 ∼ 1, ‖A−1
Λ×Λ‖2 ∼ 1,

and 1 ∼ cond 2(AΛ×Λ) ≤ cond 2(A) < ∞ [19, 21, 27].

3. An adaptive WEM algorithm. In this section, we present our adaptive
algorithm; particular settings of the parameters are presented in section 4.

We start initializing all parameters of the algorithm and choosing an appropriate
solver of the resulting algebraic systems. The algorithm consists of an outer adaptive
iterative process, where all iterations consist of several steps. At iteration n, we have
three sets of basis functions, whose sets of indices will be denoted by Λn, Λ̃n, and
Λn. More precisely, Λn is the set of indices of the active basis functions, whereas
Λ̃n consists of indices corresponding to the functions that can be activated in this
iteration. In the definition of this set one can include essential information on the
data of the problem to deal with particular situations. Finally, Λn is the set of indices
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of basis functions after a thresholding step in which we remove from Λn the indices
of those basis functions whose coefficients are less significant. We name the sets Λn,
Λ̃n and the corresponding functions active and activable, respectively.

The first step of each iteration consists in enlarging the set Λn−1 to get Λn.
In the first iteration n = 0 of the adaptive procedure, we add the indices of all
scaling functions at the starting scaling level to Λ−1 = ∅. We obtain the active set
Λ0. In the next iterations, we use the set Λ̃n−1 which is constructed by the indices
of suitably chosen basis functions whose supports interact with the supports of the
functions in Λn−1. We compute the coefficients of the residual function corresponding
to the solution of the previous outer iteration with respect to the dual basis functions
whose primal functions are in Λ̃n−1. Then, to get Λn, we add to Λn−1 a set of
suitably chosen indices δΛn−1 ⊂ Λ̃n−1 chosen in order to catch as much as possible
the bulk of the residuum with the minimum number of new basis functions. We use all
active functions corresponding to Λn = Λn−1∪δΛn−1 to assemble the stiffness matrix
AΛn×Λn

and the right-hand side vector fΛn
. Using a chosen iterative method for the

inner iterations, we improve the current approximation of the solution coefficients xΛn

by approximately solving the corresponding linear algebraic system AΛn×ΛnxΛn =
fΛn . Further, we remove the indices of all negligible functions corresponding to the
smallest (less significant) absolute entries of the coefficient vector xΛn from Λn to
keep Λn as small as possible. We check an appropriate stopping criterion for the outer
iteration in terms of the reduction of the residuum, and if it is not satisfied, we repeat
all of the above-mentioned steps. Otherwise, we accept the actual approximation of
the coefficient vector as the final solution and stop iterations.

3.1. Computation of AΛ×Λ and fΛ. When we have chosen our finite set
of indices Λ the solution of the linear system (2.3) gives the approximation uΛ of
the solution u by (2.4). An efficient approximation of the integrals involved in the
definitions of the elements aλ,μ of the stiffness matrix and fλ of the right-hand side
vector plays a fundamental role [8, 7]. In this subsection, we recall some results of
[8] which are independent of the algorithm presented there for the approximation of
the integrals. We introduce a relative precision tolint < 1 in computing the elements
of the stiffness matrix and the right-hand side vector. Let us denote by A

∗
Λ×Λ and f∗Λ

the numerical approximations of the stiffness matrix and the right-hand side vector,
respectively. Set EΛ = AΛ×Λ − A

∗
Λ×Λ, hΛ = fΛ − f∗Λ and define

i(λ, μ) =

{
1 if | suppψλ ∩ suppψμ| > 0,

0 otherwise.

Proposition 3.1. Let us fix, independently of λ and μ, a nonincreasing l1(N)-
sequence δ = (δl)l∈N with strictly positive elements, whose l1(N)-norm is close to one.
Let EΛ = (eλ,μ)λ,μ∈Λ satisfy

|eλ,μ| � tolint i(λ, μ)δ||λ|−|μ||2
−d/2||λ|−|μ||‖AΛ×Λ‖2.(3.1)

Then ‖EΛ‖2 � tolint‖AΛ×Λ‖2.
A being positive definite, we simply have ‖EΛ‖2 � tolint.
Proposition 3.2. Let us fix, independently of λ, a nonincreasing l2(N)-sequence

δ = (δl)l∈N with strictly positive elements, whose l2(N)-norm is close to one. Let
hΛ = (hλ)λ∈Λ satisfy

|hλ| � tolintδ|λ|2
−d/2|λ|‖fΛ‖2.(3.2)
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Then ‖hΛ‖2 � tolint‖fΛ‖2.
In each iteration n we verify (3.2) with the approximation of ‖fΛ‖2 given by

‖fΛn‖2. In our adaptive algorithm we usually form a sequence of enlarging sets Λn,
n = 0, 1, . . . , so ‖fΛn‖2 is increasing and we do not need to recompute any previously
computed elements of fΛk

, k = 0, . . . , n− 1.
Under the assumptions of the previous propositions and for our finite-dimensional

l2-problem we can conclude that there is tolint0 > 0 such that for all 0 < tolint ≤ tolint0

the following estimate holds:

‖xΛ − x∗
Λ‖2 � tolint‖xΛ‖2,

where x∗
Λ is the coefficient vector computed from the approximated linear system

A
∗
Λ×Λx∗

Λ = f∗Λ and u∗
Λ = (x∗

Λ)TD
−1
Λ ψΛ is the corresponding approximate solution.

In the following it will be useful to evaluate the effect of the approximation in
computing the integrals on the norm of the residuum. Let us define Jn = Λn ∪ Λ̃n,
rJn = fJn

− AJn×Λn
xΛn

, and r∗Jn
= f∗Jn

− A
∗
Jn×Λn

x∗
Λn

. According to the results of
the previous propositions and properties such as the well conditioning and stability
of the l2-problem, we have

‖rJn
− r∗Jn

‖2 � tolint‖fJn
‖2.

In our algorithm we want to find a solution xΛ which satisfies ‖fJ − AJ×ΛxΛ‖l2 ≤
ε‖fJ ‖l2 . Therefore we propose to choose the parameter tolint such that tolint‖fJn‖2

is negligible with respect to ε‖fJn‖2, i.e., tolint � ε.
Different approaches for computing entries of stiffness matrix and right-hand side

can be found in [2, 3].

3.2. Initialization part. We choose an appropriate solver of the resulting linear
algebraic systems, such as steepest descent, CG, BiCG, GMRES, and set its stopping
tolerance tolgrad, which is an upper bound for the ratio between the final algebraic
residuum and the algebraic residuum corresponding to the initial guess of the current
outer iteration (see (3.3)). The choice of tolint has to be done in such a way that the
approximation of the integrals gives a negligible contribution in the approximation
of the bulk of the residuum. Further, we set all remaining parameters: relative acti-
vating and thresholding tolerances tolon and toloff involved in adding and removing
indices of basis functions to and from the active set Λ, respectively. Finally, we set
the relative target accuracy ε of the adaptive process, i.e., the final reduction factor
of the total residuum.

3.3. Activating new basis functions. In each iteration n > 0 we want to
catch and reduce the bulk of the residuum r = fJ − AJ×Λn−1

xΛn−1
and improve

the solution with its components corresponding to the most significant entries of the
residuum. In practice, we choose those significant components of the residuum whose
indices belong to the activable set Λ̃n−1. This procedure is realized by sorting the
absolute values of the entries of the vector r̃Λ̃n−1

= f̃Λ̃n−1
− AΛ̃n−1×Λn−1

xΛn−1
in

decreasing order, summing successively the squares of the largest ones and adding the
corresponding indices to δΛn−1, until the target percentage of ‖r̃Λ̃n−1

‖2
2 is reached,

i.e., while
∑

λ∈δΛn−1
|r̃λ|2 ≤ tol2on‖r̃Λ̃n−1

‖2
2. Then we set Λn = Λn−1 ∪ δΛn−1 and

extend the old approximation of the coefficient vector xΛn−1
by zeros at the positions

corresponding to indices λ ∈ δΛn−1 to get the initial coefficient vector xinit
Λn

. In the

first outer iteration n = 0 we have Λ−1 = ∅, xΛ−1
= 0 and δΛ−1 is the set of indices
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of all scaling functions at the starting level j0 greater than or equal to the minimum
construction level of basis functions.

Function [Λn, δΛn−1] = Activate(Λn−1, Λ̃n−1, r̃Λ̃n−1
, tolon).

(i) Set N := card Λ̃n−1 and sort the absolute values of the entries of r̃Λ̃n−1
in

decreasing order. The vector λ∗ := λ∗(r̃Λ̃n−1
) = (λ∗

1, λ
∗
2, . . . , λ

∗
N ) is the vec-

tor of permuted indices which gives the decreasing rearrangement r̃∗
Λ̃n−1

=
(|r̃λ∗

1
|, |r̃λ∗

2
|, . . . , |r̃λ∗

N
|) of r̃Λ̃n−1

; then compute ‖r̃Λ̃n−1
‖2
2.

(ii) For k = 1, 2, . . . , compute the sum
∑k

l=1 |r̃λ∗
l
|2 in order to find the biggest k

such that this sum is less than or equal to tol2on‖r̃Λ̃n−1
‖2
2. For the resulting k,

set δΛn−1 := {λ∗
l ; l = 1, . . . , k} and Λn := Λn−1 ∪ δΛn−1.

Function xinit
Λn

= Extend(xΛn−1
,Λn−1, δΛn−1).

(i) Define xinit
Λn

keeping the coefficients xΛn−1
in the positions corresponding to

Λn−1 and set to zero the coefficients corresponding to the added basis functions
ψμ, μ ∈ δΛn−1.

3.4. Assembling fΛn and AΛn×Λn . For a given Λn we need to assemble the
right-hand side vector fΛn and the stiffness matrix AΛn×Λn . In the computation
of aλ,μ and fλ we use numerical quadrature formulas that allow us to control the
approximation of the elements as in Propositions 3.1 and 3.2.

Computing the entries of fΛn . We form a sequence {f (J)
Λn

}J∈N of approxima-
tions to fΛn with increasing accuracy to satisfy the test criterion (3.2):

1. Fix a level J > max |λ| + 2 and compute f
(J)
Λn

using the Simpson composite
formula on the corresponding grid.

2. Using the same evaluations of the right-hand side, compute f
(J−1)
Λn

at the
subgrid of the level J − 1.

3. Set h
(J)
Λn

:= f
(J)
Λn

− f
(J−1)
Λn

and f
(J+1)
Λn

:= f
(J)
Λn

.

4. For all entries h
(J)
λ of h

(J)
Λn

, do

• if |h(J)
λ | > tolintδ|λ|2

−d/2|λ|‖f (J)
Λn

‖2, then recompute the element f
(J+1)
λ

of f
(J+1)
Λn

using grid nodes of the level J + 1.

5. If the previous test criterion is not satisfied for all entries h
(J)
λ , λ ∈ Λn, then

set J = J + 1 and go back to the point 3. Otherwise output fΛn := f
(J+1)
Λn

.
We set δ|λ| = 1/|λ| in (3.2), and the level J is chosen in such a way that we are able
to detect all singularities in f .

Remark 3.3. The choice J > max |λ|+2 in the previous algorithm is not optimal.
Nevertheless, in many applications in which the maximal level needed by the approx-
imation process is not too large, the evaluation of the right-hand side on a fine fixed
grid leads to a faster approximation of the integrals than an adaptive method like the
one presented for the entries of the stiffness matrix. An algorithm similar to the one
proposed for the stiffness matrix can be applied for the right-hand side too.

Computing the entries of AΛn×Λn
. In this case, we apply a composite Gauss

quadrature formula to compute aλ,μ. To satisfy (3.1) for all entries we can use a
modification of the above-mentioned adaptive scheme applying a sequence of Gauss
quadrature formulas on each dyadic cube in the intersection of the supports of test and
trial functions [5] to satisfy the test criterion (3.1), where δ||λ|−|μ|| = 1/(||λ|−|μ||2). In
this approach only dyadic cubes of level max{|λ|, |μ|} are involved in the computation
of the integrals.
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For n > 0, the entries aλ,μ and fλ with λ ∈ δΛn−1 ⊂ Λ̃n−1 and μ ∈ Λn−1 have
been computed and stored in the previous iteration during the computation of the
residuum r̃Λ̃n−1

. Thus we compute only the remaining entries.

Function [AΛn×Λn , fΛn
] = Assemble(Λn−1, δΛn−1).

(i) Compute all nonzero entries aλ,μ, with (λ, μ) ∈ {{Λn−1× δΛn−1}∪{δΛn−1×
δΛn−1}}.

(ii) Assemble AΛn×Λn
and fΛn

using these entries and those previously stored.

3.5. Iterative improvement of xΛn . For each outer iteration we successively
improve the current approximation of the coefficient vector xinit

Λn
by approximately

solving the linear algebraic system AΛn×Λn
xΛn

= fΛn
using the chosen iterative

method. We stop iterations when the following relative stopping criterion is matched:

‖rΛn
‖2
2 ≤ tol2grad‖fΛn

− AΛn×Λnx
init
Λn

‖2
2,(3.3)

where rΛn = fΛn − AΛn×ΛnxΛn
is the residual vector corresponding to the active set

Λn. The parameter tolgrad is a given relative stopping tolerance. The idea of the
iterative improvement is to solve in each outer iteration the corresponding algebraic
system to a moderate accuracy, in order to avoid oversolving the linear system when
the discretization error is still large.

Function [xΛn , rΛn ] = GradMethod(AΛn×Λn , fΛn ,x
init
Λn

, tolgrad). The body of
this routine depends on the solved problem. When we deal with symmetric positive
definite matrices we replace GradMethod by steepest descent, CG, etc., and for non-
symmetric matrices we replace GradMethod by BiCG, GMRES, etc.

3.6. Removing negligible basis functions. Some basis functions ψλ, λ ∈ Λn,
can have negligible energy contributions |xλ|2 to the solution, i.e., their coefficients
are less significant so we remove them from Λn to get Λn, in order to keep Λn+1 as
small as possible. The number of basis functions, which we may remove, is related to
the total energy ‖xΛn |δΛn−1

‖2
2 of newly added functions ψμ, μ ∈ δΛn−1. We call this

process thresholding, and it can be realized by sorting absolute values of the entries of
xΛn in decreasing order, successively summing (starting from the bottom of the sorted
vector) squares of the smallest ones, while this sum is less than tol2off‖xΛn |δΛn−1

‖2
2. We

remove these entries from xΛn
and their indices from Λn except those which correspond

to the scaling functions. The particular realization is similar to the routine Activate
and appears as follows.

Function [xΛn
,Λn] = Threshold(xΛn ,Λn, δΛn−1, toloff).

(i) Set N := card Λn and sort absolute values of the entries of xΛn
into decreasing

order, obtaining the permutation vector λ∗ := λ∗(xΛn) = (λ∗
1, λ

∗
2, . . . , λ

∗
N ) of

indices, which gives the decreasing rearrangement x∗
Λn

= (|xλ∗
1
|, |xλ∗

2
|, . . . ,

|xλ∗
N
|) of xΛn ; then compute ‖xΛn |δΛn−1

‖2
2.

(ii) For k = 1, 2, . . . , compute the sum
∑k

l=1 |x∗
λN−l+1

|2 in order to find the

biggest k such that this sum is less than tol2off‖xΛn |δΛn−1

‖2
2. For the re-

sulting k, set Λn := {λ∗
l ; l = 1, . . . , N − k} ∪ {all indices λ∗

m, m > N −
k, of scaling functions} and set xΛn

:= xΛn |Λn

.

3.7. Construction of the activable set Λ̃n. We start with the empty set Λ̃n.
For all λ ∈ Λn, the indices μ of all functions ψμ constructed at the level |μ| = |λ| + 1
whose supports have nonempty intersections with the support of ψλ and μ �∈ Λn
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are added to Λ̃n. The number of activable functions ψμ, μ ∈ Λ̃n, can be many
times greater than the number of active functions corresponding to Λn. Therefore
it is convenient to introduce a spatial truncation rule to keep Λ̃n small. We use
contracted support instead of considering intersections with the whole support of
ψλ, using a contraction factor c. Typical choices are c = 1/4 or c = 1/8. Another
possibility is to select only adjacent wavelets with respect to the positions of their
central dyadic nodes, i.e., 2 functions in one dimension, 8 in two dimensions and 26
in three dimensions.

Function Λ̃n = ConstructActivableSet(Λn).
(i) Set Λ̃n := ∅.
(ii) For all λ ∈ Λn add to Λ̃n indices μ of all functions ψμ constructed at the level

|μ| = |λ| + 1 such that μ �∈ Λn and
Var. 1. suppψμ has a nonempty intersection with the contraction of suppψλ by

the factor c ∈ (0, 1] with respect to its barycenter;
Var. 2. ψμ belongs to adjacent wavelets.

In this function one can include the “a priori” known information on the most sig-
nificant basis functions for describing the forcing function and the residuum.

3.8. Assembling the residual vector r̃Λ̃n
. For given Λ̃n we assemble the

residual vector r̃Λ̃n
using the activable functions ψλ, λ ∈ Λ̃n. The entries r̃λ are

computed by

r̃λ = f̃λ − d−1
λ 〈AuΛn

, ψλ〉 ∀λ ∈ Λ̃n,(3.4)

where f̃λ = d−1
λ 〈f, ψλ〉 and uΛn

is given by

uΛn
=

∑
μ∈Λn

d−1
μ xμψμ = xT

Λn
D

−1

Λn
ψΛn

.(3.5)

We substitute the expansion (3.5) of uΛn
into (3.4) and we obtain

r̃λ = f̃λ −
∑

∀μ∈Λn

d−1
λ d−1

μ xμ〈Aψμ, ψλ〉 ∀λ ∈ Λ̃n,

or in matrix form, r̃Λ̃n
= f̃Λ̃n

− AΛ̃n×Λn
xΛn

.

To compute the entries of f̃Λ̃n
and AΛ̃n×Λn

we use the same quadrature formulas
as for computing the entries of fΛn and AΛn×Λn . The resulting routine appears as
follows.

Function [r̃Λ̃n
, f̃Λ̃n

] = Residual(Λ̃n,Λn,xΛn
).

(i) Compute and store all entries f̃λ, aλ,μ, and r̃λ for λ ∈ Λ̃n and μ ∈ Λn using
the above-mentioned formulas.

3.9. Stopping criterion. A natural stopping criterion of the outer loop is based
on the achievement of the sufficient (relative) reduction of the total residuum ‖fJ −
AJ×ΛnxΛn‖l2 . If we admit that the sets Λ̃n catch the bulk of the residuum in each

iteration, ‖fJ −AJ×ΛnxΛn‖l2 is well approximated by
√
‖rΛn‖2

2 + ‖r̃Λ̃n
‖2
2 and ‖fJ ‖l2

by
√
‖fΛn

‖2
2 + ‖f̃Λ̃n

‖2
2 for n sufficiently large. Our final stopping criterion is as follows:

if (‖rΛn‖2
2 + ‖r̃Λ̃n

‖2
2 ≤ ε2 (‖fΛn‖2

2 + ‖f̃Λ̃n
‖2
2)),

then x(ε) := xΛn
, Λ(ε) := Λn and stop the outer iterations.
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3.10. ADWEM solver. In this subsection, we summarize the above-mentioned
ingredients of the algorithm by the calling sequence of the functions corresponding to
the previous different steps.

ADWEM solver. Set all above-mentioned parameters of the algorithm and
define Λ−1 = Λ−1 = ∅, xΛ−1

= 0, δΛ−1 = {indices of all scaling functions}.
For n = 0, 1, . . . do

if (n = 0) then Λ0 = δΛ−1, else [Λn, δΛn−1] = Activate(Λn−1, Λ̃n−1, r̃Λ̃n−1
,

tolon);
xinit

Λn
= Extend(xΛn−1

,Λn−1, δΛn−1);

[AΛn×Λn
, fΛn ] = Assemble(Λn−1, δΛn−1);

[xΛn , rΛn
] = GradMethod(AΛn×Λn

, fΛn
,xinit

Λn
, tolgrad), with the stopping cri-

terion: if (‖rΛn
‖2
2 ≤ tol2grad‖fΛn − AΛn×Λnx

init
Λn

‖2
2) then STOP;

[xΛn
,Λn] = Threshold(xΛn ,Λn, δΛn−1, toloff);

Λ̃n = ConstructActivableSet(Λn);
[r̃Λ̃n

, f̃Λ̃n
] = Residual(Λ̃n,Λn,xΛn

);

if ‖rΛn‖2
2 + ‖r̃Λ̃n

‖2
2 ≤ ε2 (‖fΛn‖2

2 + ‖f̃Λ̃n
‖2
2) then x(ε) := xΛn

, Λ(ε) := Λn and
STOP;

end.
Remark 3.4. In the previous description we use a fixed tolerance tolgrad. Never-

theless it is possible to use a changing tolerance. We propose the following rule for
choosing tolgrad at each iteration: given tolgrad0

, define

tolgradn := min

{
tolgrad0 , C

‖fΛn−1
− AΛn−1×Λn−1

xΛn−1
‖2

‖fΛn
− AΛn×Λnx

init
Λn

‖2

}
, C ∈ (0, 1).

For this choice, the residuum norm ‖rΛn‖2 decreases minimally with the rate C with
increasing outer iteration n.

4. Numerical examples. In this section, we illustrate the behavior of the in-
troduced adaptive algorithm. In Example 1, the computational domain Ω is a curved
quadrilateral and the forcing function f induces in the solution two Gaussian peaks
of different heights, slopes, and positions (see Figures 4.1 and 4.2). We expect the
adaptive algorithm to feel at first the higher peak and, after reaching a good approx-
imation of this peak, the algorithm should reveal the smaller one. For this case, we
illustrate sensitivity to the ADWEM parameters toloff , tolon, and the support con-
traction c. In Example 2, we take the same geometry and split it into two subdomains
with different mappings. The particular geometries are depicted in Figures 4.4 and
4.10, respectively. With these examples we want to investigate the effects of mapping
and matching on the adaptive method.

The remaining two examples correspond to an L-shaped domain. These cases are
interesting because f is everywhere infinitely differentiable and a singularity of u is
generated by the shape of the domain (see Figures 4.14 and 4.15). The last example
is aimed at showing the difference in terms of rates of convergence between the linear
and the nonlinear approximations, respectively, depending on the Sobolev and the
Besov regularities. Further numerical results and comparisons can be found in [6].

In our numerical experiments we use piecewise linear and piecewise quadratic
biorthogonal B-splines, with L = 2, L̃ = 2 and L = 3, L̃ = 5, respectively. We
denote by L and L̃ the exactness order of the primal and dual basis, respectively,
i.e., polynomials up to the degree L − 1 and L̃ − 1 are reproduced exactly [26]. If
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Fig. 4.1. Example 1. Exact solution uex (linear scale).
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Fig. 4.2. Example 1. Exact solution uex (log scale).

not specified, the starting scaling level j0 is equal to 4. The operator we consider is
elliptic and self-adjoint; therefore we replace GradMethod by CG. We set the stopping
tolerance tolgrad0 = 1e− 4 and C = 0.9. Other parameters of the adaptive algorithm
are the relative activating and thresholding tolerances tolon = 0.99 and toloff = 1e−3
and the relative target accuracy ε of the adaptive process (ε = 1e − 3 for Examples
1 and 2 and ε = 5e− 2 for Examples 3 and 4). In computing the entries aλ,μ, fλ we
use the relative tolerance tolint = 1e− 6. We set c = 0.125 in the relation that selects
the activable functions (see the routine ConstructActivableSet).

Example 1. Let Ω ⊂ R
2 be the curved quadrilateral depicted in Figure 4.4. The

corresponding mapping F : Ω̂ → Ω is chosen in such a way that it maps the reference
unit square Ω̂ to the set

Ω =
{
(x, y) ∈ R

2 : x > 0, y > x− 0.3, x2 + y2 > 0.09, (x− 0.5)2 + (y − 0.2)2 < 0.5
}
.

Let us consider the problem {
−�u = f in Ω,

u = 0 on ∂Ω
(4.1)

with f = −�uex and

uex(x, y) = x(y − x + 0.3)(0.5 − (x− 0.5)2 − (y − 0.2)2)(x2 + y2 − 0.09) g,
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Fig. 4.3. Example 1. Right-hand side f (linear scale).

Table 4.1

Example 1. ADWEM parameters sensitivity (toloff = 0.001, c = 0.125).

tolon = 0.7 tolon = 0.9 tolon = 0.99
Outer iter. n #Λn δH1(Ω) #Λn δH1(Ω) #Λn δH1(Ω)

0 225 6.274e-1 225 6.274e-1 225 6.274e-1
1 226 5.288e-1 230 3.804e-1 241 3.374e-1
2 229 4.015e-1 250 2.170e-1 298 1.722e-1
3 234 3.135e-1 328 1.213e-1 497 8.676e-2
4 245 2.323e-1 567 6.764e-2 1245 4.289e-2
5 268 1.726e-1 1278 3.769e-2 4103 1.953e-2
6 313 1.301e-1 3353 2.024e-2 15161 3.463e-3

Table 4.2

Example 1. ADWEM parameters sensitivity (toloff = 0.01, c = 0.125).

tolon = 0.7 tolon = 0.9 tolon = 0.99
Outer iter. n #Λn δH1(Ω) #Λn δH1(Ω) #Λn δH1(Ω)

0 225 6.274e-1 225 6.274e-1 225 6.274e-1
1 226 5.288e-1 230 3.804e-1 241 3.374e-1
2 229 4.015e-1 250 2.170e-1 298 1.722e-1
3 234 3.135e-1 328 1.213e-1 497 8.676e-2
4 245 2.323e-1 567 6.764e-2 1244 4.289e-2
5 268 1.726e-1 1278 3.769e-2 4101 1.954e-2
6 313 1.301e-1 3353 2.024e-2 15152 3.462e-3

where g = 20e−1000r2
1 + 0.02e−300r2

2 with r2
1 = (x − 0.25)2 + (y − 0.5)2 and r2

2 =
(x − 0.7)2 + (y − 0.7)2. The plots of f in the linear scale and uex in the linear and
logarithmic scales are plotted in Figures 4.3, 4.1, and 4.2, respectively.

Sensitivity of ADWEM algorithm with respect to the parameters toloff , tolon,
and support contraction c considered are shown in Tables 4.1–4.4. As expected,
larger values of tolon imply a faster activation of new basis functions and a parallel
reduction of the error. On the other hand, for steady problems the thresholding step
is in practice less important, and this can be observed from the smooth dependence of
the number of basis functions and of the error on the parameter toloff . The number of
active functions N = #Λn grows slowly as c increases, since the parameter c mainly
affects the number of activable basis functions at each iteration than the number of
active basis functions.
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Table 4.3

Example 1. ADWEM parameters sensitivity (toloff = 0.1, c = 0.125).

tolon = 0.7 tolon = 0.9 tolon = 0.99
Outer iter. n #Λn δH1(Ω) #Λn δH1(Ω) #Λn δH1(Ω)

0 225 6.274e-1 225 6.274e-1 225 6.274e-1
1 226 5.288e-1 230 3.804e-1 237 3.393e-1
2 229 4.015e-1 250 2.170e-1 287 1.736e-1
3 234 3.135e-1 327 1.215e-1 470 8.790e-2
4 245 2.323e-1 559 6.787e-2 1159 4.355e-2
5 268 1.726e-1 1248 3.821e-2 3733 2.006e-2
6 313 1.301e-1 3226 2.074e-2 13599 4.303e-3

Table 4.4

Example 1. ADWEM parameters sensitivity (toloff = 0.001, tolon = 0.99).

c = 0.125 c = 0.5 c = 1.0
Outer iter. n #Λn δH1(Ω) #Λn δH1(Ω) #Λn δH1(Ω)

0 225 6.274e-1 225 6.274e-1 225 6.274e-1
1 241 3.374e-1 241 3.374e-1 241 3.374e-1
2 298 1.722e-1 299 1.721e-1 299 1.721e-1
3 497 8.676e-2 499 8.669e-2 500 8.667e-2
4 1245 4.289e-2 1271 4.272e-2 1282 4.265e-2
5 4103 1.953e-2 4239 1.938e-2 4324 1.930e-2
6 15161 3.463e-3 15756 3.170e-3 16205 2.969e-3

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Active functions distribution (N=241), iteration n=1

j=4 (225 scal.)
j=4 (16 wav.)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Active functions distribution (N=1245), iteration n=4

j=4 (225 scal.)
j=4 (50 wav.)
j=5 (102 wav.)
j=6 (248 wav.)
j=7 (620 wav.)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Active functions distribution (N=58049), iteration n=7

j=4 (225 scal.)
j=4 (123 wav.)
j=5 (288 wav.)
j=6 (761 wav.)
j=7 (1733 wav.)
j=8 (5346 wav.)
j=9 (15215 wav.)
j=10 (34358 wav.)

Fig. 4.4. Example 1. Distribution of active functions, n = 1, 4, 7, N = #Λn.

In Figure 4.4, we successively plot the distributions of active basis functions in
outer iterations n = 1, 4, 7 for the choice L = 2, L̃ = 2. We observe that the adaptive
algorithm recognizes at first the deficiency corresponding to the higher peak and
activates new basis functions near its center. When the adaptive process reaches
a good approximation of the higher peak (iteration 4) it reveals another deficiency
corresponding to the smaller peak and starts to add new basis functions there as
well. The approximate solution uΛn and the difference |uΛn − uex| are depicted in
the logarithmic scale in Figures 4.5 and 4.6, respectively, for n = 1, 4, 7. The terms
involved in the stopping criterion of the adaptive algorithm are depicted in Figure 4.7.

Finally, we plot the relative errors

δL2 =
‖uΛn − uex‖L2(Ω)

‖uex‖L2(Ω)
, δH1 =

‖uΛn − uex‖H1(Ω)

‖uex‖H1(Ω)

of the approximate solution uΛn in Figure 4.8 with respect to the number of active
functions N = #Λn. The above-mentioned L2- and H1-norms are evaluated using
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Fig. 4.5. Example 1. Computed solution uΛn , n = 1, 4, 7, N = #Λn.
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Fig. 4.6. Example 1. Error of the computed solution |uΛn − uex|, n = 1, 4, 7, N = #Λn.
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Fig. 4.7. Example 1. Terms in the stopping criterion.

the Simpson composite formula at the fixed very fine grid of level 13. For comparison
purposes we depict the relative errors of the best N -term approximations in L2(Ω) and
H1(Ω) computed using the wavelet coefficients in the final iteration n as the wavelet
coefficients of the exact solution. The numerical values of the relative errors δL2 and
δH1 are listed in Table 4.5. In this table we report also the number of iterations of
the CG iterative solver (CG iters.) and the number of active basis functions (#Λn).
We remark that the number of CG iterations is not growing with the number of basis
functions and its levels. This is due to the good conditioning of the matrix A in all
the outer iterations. In Figures 4.8 and 4.9 and in Tables 4.5 and 4.6, we report the
behavior of the relative errors using linear and quadratic basis functions.

The rates of convergence α of the least squares approximations cNα of the rel-
ative errors with respect to N = #Λn are given in Table 4.7 for both linear and
quadratic basis functions using all iterations reported in Tables 4.5 and 4.6. The
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Fig. 4.8. Example 1. Relative errors L = 2, L̃ = 2.

Table 4.5

Example 1. Case L = 2, L̃ = 2. Behavior of the number of inner iterations, the number of
active basis functions, and the relative errors in the outer iteration.

Outer iter. n CG iters. #Λn δL2(Ω) δH1(Ω)

0 25 225 3.292e-1 6.274e-1
1 17 241 9.576e-2 3.376e-1
2 15 298 2.626e-2 1.725e-1
3 13 497 7.374e-3 8.725e-2
4 15 1245 2.314e-3 4.388e-2
5 13 4103 7.411e-4 2.161e-2
6 12 15161 2.324e-4 9.872e-3
7 14 58049 6.603e-5 1.846e-3
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Fig. 4.9. Example 1. Relative errors L = 3, L̃ = 5.

theoretical rates of convergence are determined by the polynomial degree of the used
basis functions [23].

Example 2. In this case, we split the domain Ω of the previous example into two
parts, Ω1 (lower) and Ω2 (upper), as shown in Figure 4.10. The mapping consists of
two components which map the reference unit square Ω̂ to Ω1 and Ω2, respectively.
We remark that the splitting intersects one of the Gaussian peaks.

In Figure 4.10, we successively plot the distributions of active basis functions in
outer iterations n = 1, 4, 7 (L = 2, L̃ = 2). The behavior of the adaptive algorithm
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Table 4.6

Example 1. Case L = 3, L̃ = 5. Behavior of the number of inner iterations, the number of
active basis functions, and the relative errors in the outer iteration.

Outer iter. n CG iters. #Λn δL2(Ω) δH1(Ω)

0 33 196 2.343e-1 4.574e-1
1 15 222 2.251e-2 9.697e-2
2 18 278 3.773e-3 2.310e-2
3 21 527 9.514e-4 5.268e-3
4 31 1427 1.288e-4 1.353e-3

Table 4.7

Example 1. Comparison of the rates of convergence.

Theoretical Computed Theoretical Computed
uniform (L2) adaptive (L2) uniform (H1) adaptive (H1)

L = 2, L̃ = 2 −1 −1.346 −1/2 −0.902

L = 3, L̃ = 5 −3/2 −2.059 -1 −1.702
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Fig. 4.10. Example 2. Distribution of active functions, n = 1, 4, 7, N = #Λn.

is similar to the previous case, but we have approximately twice as many candidates
for activation. This results from the splitting of Ω into two subdomains Ω1 and Ω2

and the use of the same starting scaling level j0 = 4 as in the previous examples
in both subdomains. Therefore the algorithm activates more basis functions in the
equivalent outer iterations for the same fixed activating and thresholding tolerances
than in Example 1 (compare Tables 4.5 and 4.8). The terms involved in the stopping
criterion of the adaptive algorithm are depicted in Figure 4.11. Finally, we plot the
relative errors δL2(Ω) and δH1(Ω) of the approximate solution uΛn

in Figures 4.12 and

4.13 for L = 2, L̃ = 2 and L = 3, L̃ = 5, respectively, together with the relative errors
of the best N -term approximations in L2(Ω) and H1(Ω). The numerical values are
listed for L = 2, L̃ = 2 in Table 4.8. The rates of convergence of the least squares
approximations of the errors with respect to N are given in Table 4.9 for both linear
and quadratic basis functions.

We remark that the matching induces a faster increase of the number of basis
functions caused by the constraint of a minimum construction level and to the larger
supports of matched basis functions. These facts do not affect too much the rates
of convergence of the ADWEM algorithm because it causes just a shift of the curves
(Figures 4.8, 4.9 and 4.12, 4.13).

Example 3 (see [2]). Let Ω ⊂ R
2 be the L-shaped domain depicted in Figure 4.16

and let us consider again the problem (4.1) in Ω. Introducing polar coordinates (r, ϕ),
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Table 4.8

Example 2. Case L = 2, L̃ = 2. Behavior of the number of inner iterations, the number of
active basis functions, and the relative errors in the outer iteration.

Outer iter. n CG iters. #Λn δL2(Ω) δH1(Ω)

0 53 465 1.834e-1 4.262e-1
1 37 499 9.958e-2 3.146e-1
2 30 607 3.565e-2 1.828e-1
3 37 968 8.829e-3 8.848e-2
4 38 2313 2.341e-3 4.334e-2
5 28 7385 7.523e-4 2.090e-2
6 39 27060 2.229e-4 9.354e-3
7 28 103321 6.594e-5 1.790e-3
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Fig. 4.11. Example 2. Terms in the stopping criterion.
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Fig. 4.12. Example 2. Relative errors L = 2, L̃ = 2.

the right-hand side f is defined in such a way that the corresponding exact solution is
[2] uex(r, ϕ) = h(r)r2/3 sin

(
2
3 (ϕ + π

2 )
)
, where h ∈ C∞(Ω) is the following truncation

function:

h(r) =
w(3/4 − r)

w(r − 1/2) + w(3/4 − r)
, w(r) =

{
e−1/r2

if r > 0,
0 else.

The plots of the right-hand side f and the exact solution uex are depicted in Fig-
ures 4.14 and 4.15, respectively.
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Fig. 4.13. Example 2. Relative errors L = 3, L̃ = 5.

Table 4.9

Example 2. Comparison of the rates of convergence.

Theoretical Computed Theoretical Computed
uniform (L2) adaptive (L2) uniform (H1) adaptive (H1)

L = 2, L̃ = 2 −1 −1.374 −1/2 −0.911

L = 3, L̃ = 5 −3/2 −2.506 −1 −2.226
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Fig. 4.14. Example 3. f (linear scale).
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Fig. 4.15. Example 3. uex (linear scale).
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Fig. 4.16. Example 3. Distribution of active functions, n = 1, 4, 7, N = #Λn.
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Fig. 4.17. Example 3. Computed solution uΛn , n = 1, 4, 7, N = #Λn.

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25
Difference of approximate/exact solution (N=821), iteration n=1

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25
Difference of approximate/exact solution (N=2830), iteration n=4

−1 −0.5 0 0.5 1−1

−0.5

0

0.5

1

0

0.05

0.1

0.15

0.2

0.25
Difference of approximate/exact solution (N=32027), iteration n=7

Fig. 4.18. Example 3. Error of the computed solution |uΛn − uex|, n = 1, 4, 7, N = #Λn.

In Figure 4.16, we plot successively the distributions of active basis functions in
outer iterations n = 1, 4, 7 (L = 2, L̃ = 2). At first the algorithm recognizes the
deficiency corresponding to the right-hand side f and activates new basis functions
in the region where f displays strong gradients (see Figure 4.14). In iteration 6, the
adaptive process reaches a good approximation of the behavior of f , and it reveals
another deficiency around the reentrant corner of the L-shaped domain and starts to
add new basis functions also there. The approximate solution uΛn

and the difference
|uΛn − uex| are depicted in the linear scale in Figures 4.17 and 4.18, respectively, for
n = 1, 4, 7. In Figures 4.19, 4.20, and 4.21 we plot the behavior of the relative errors
corresponding to linear wavelets with j0 = 3, j0 = 4 and quadratic wavelets with
j0 = 4, together with the relative errors of the best N -term approximations in L2(Ω)
and H1(Ω). The numerical values of these relative errors for linear basis functions
are listed in Table 4.10 (j0 = 4).
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Fig. 4.19. Example 3. Relative errors L = 2, L̃ = 2, j0 = 3.
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Fig. 4.20. Example 3. Relative errors L = 2, L̃ = 2, j0 = 4.
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Fig. 4.21. Example 3. Relative errors L = 3, L̃ = 5.

The least squares approximations cNα of the errors in the L2- and H1-norms
with respect to N are given in Table 4.11. In this case, f ∈ C∞(Ω) and uex ∈ Hs(Ω)
only for s < 5/3 due to its singularity around the reentrant corner [25]. Moreover,
uex belongs to the Besov spaces Bs

τ,τ (Ω) for all s > 0 and 1/τ = s/2 + 1/2 [15]. The
upper bound in the Sobolev regularity implies an upper bound in the theoretical rate
of convergence for uniform refinement, whereas for the unbounded Besov regularity
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Table 4.10

Example 3. Case L = 2, L̃ = 2. Behavior of the number of inner iterations, the number of
active basis functions, and the relative errors in the outer iteration.

Outer iter. n CG iters. #Λn δL2(Ω) δH1(Ω)

0 32 705 1.987e-1 9.777e-1
1 25 821 1.369e-1 9.554e-1
2 26 1103 9.119e-2 9.081e-1
3 21 1647 5.390e-2 8.176e-1
4 19 2830 2.976e-2 6.467e-1
5 25 5358 1.405e-2 4.099e-1
6 20 11731 7.284e-3 2.071e-1
7 21 32027 4.191e-3 4.030e-2

Table 4.11

Example 3. L = 2, L̃ = 2. Comparison of asymptotic constants in the error decay.

Theoretical Computed Theoretical Computed
uniform uniform adaptive adaptive

L2 cu0N
−5/6+ε 3.650N−0.408 ca0N

−1 116.734N−1.018

H1 cu1N
−1/3+ε 10.706N−0.277 ca1N

−1/2 215.285N−0.773

Table 4.12

Example 4. L = 2, L̃ = 2. Comparison of asymptotic constants in the error decay.

Theoretical Computed Theoretical Computed Computed
uniform uniform adaptive adaptive (1) adaptive (2)

L2 cu0N
−5/6+ε 2.227N−0.783 ca0N

−1 17.564N−1.131 6.339N−0.981

H1 cu1N
−1/3+ε 2.580N−0.456 ca1N

−1/2 6.763N−0.636 5.023N−0.588

we expect a higher theoretical asymptotic rate of convergence for the adaptive case
bounded by the order of the polynomial approximation of the basis functions. The
theoretically derived rates of convergence for a uniform refinement are −5/6+ ε in L2

and −1/3 + ε in H1 with ε > 0.
A similar problem with a L-shape domain with curved boundaries was considered

in [6], and results similar to the ones presented above were obtained, meaning that
for this kind of problem a nonaffine mapping in the subdomains does not affect the
behavior of the method.

Example 4. Let us consider now the same problem as in Example 3, but with the
truncation function h defined by

h(r) =
w(3/4 − r)

w(r − 1/4) + w(3/4 − r)
, w(r) =

{
r2 if r > 0,
0 else.

In contrast to the solution of Example 3, this solution does not present any sharp struc-
ture. Thus both adaptive and uniform refinement methods can reach the asymptotic
rates of convergence with relatively few degrees of freedom. For this problem we con-
sider two adaptive solutions with the following refinement parameters: tolon = 0.9,
toloff = 0.01 (case 1) and tolon = 0.99, toloff = 0.001 (case 2), respectively, and a
uniform refinement with linear basis functions.

In Table 4.12, we report the least squares approximations cNα of the errors in L2-
and H1-norms. The numerical computations give results very close to the expected
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theoretical rates of convergence, and in this case the constants of the adaptive case,
proportional to the Besov norm of the exact solution, are larger than the constant of
the uniform case, proportional to the Sobolev norm of the exact solution.

5. Conclusion. The origin of wavelets (signal processing, harmonic analysis)
is far from the numerical solution of boundary value problems in general bounded
domains. Yet, the adaptive wavelets algorithm that we have investigated shows that
wavelet expansions can be employed in this task as well, with encouraging results. The
proposed algorithm shows good behavior with respect to efficiency and reliability in all
considered examples, and also when the discretization of the problem requires mapping
and splitting into subdomains. To our knowledge this is the first time that these
aspects of an adaptive wavelet Galerkin method have been thoroughly investigated.
In our tests, we find that the asymptotic behavior of the error is parallel to that
of the best N -term approximation in H1, although the number of basis functions
involved in the solution process depends also on the mapping and the splitting. The
comparison of results obtained in Examples 1 and 2 clearly suggests keeping the
number of subdomains as small as possible.

The efficiency of a wavelet discretization method with respect to other meth-
ods (finite elements, spectral methods) is strongly dependent on the specific data
structures and algorithms used to represent the discrete operator equations (matrix
against matrix-free, approximation of integrals, etc.). By comparing the number of
unknowns needed by some well-assessed adaptive FEMs (mentioned in the appendix)
and by our ADWEM method to reach the same H1-relative error on the proposed
examples, we find that our method requires significantly fewer basis functions, denot-
ing a good capability of adaptive wavelets methods to catch and resolve very sharp
structures in the solution and singularities. However, by comparing the CPU-time,
the FEMs are faster, the assembling of the linear system in our method being still
quite slow. The gap in CPU-time between the two methods can be strongly reduced
with some suitable choices of the data structures, and many improvements are still
possible. We remark that wavelet discretization methods offer other advantages; for
example, for systems of equations they allow easy choices of different basis functions
for different unknowns without mesh constraint. These advantages can be relevant in
some applications.

Appendix. Comparison with adaptive FEMs. In this appendix, we com-
pare some results achieved by our algorithm (L = L̃ = 2, corresponding to linear
wavelets) with the results produced using linear finite elements by the well-assessed
adaptive finite element code ALBERTA (Adaptive multiLevel finite element toolbox
using Bisectioning refinement and Error control by Residual Techniques for scientific
Applications) [30, 1]. For adaptive FEMs, as for the adaptive wavelets methods,
important results on the convergence and optimality are known [24, 29, 9, 31].

We point out that the comparisons reported here are aimed at drawing indications
about viability of the proposed ADWEM approach and not to establish a competition
between the software or the implementations of the methods.

A.1. Residual based adaptive FEM algorithms. In order to discretize prob-
lem (2.2), we introduce a regular family of conforming partitions {Th}h of the domain
Ω into triangles; let us denote by hT the diameter of the element T ∈ Th. The space
H in (2.2) is approximated by Vh =

{
vh ∈ H ∩ C0(Ω) : vh|T ∈ P1(T ) for all T ∈ Th

}
,

where P1(T ) is the space of polynomials of degree at most 1, on the element T ∈ Th.
For simplicity we do not consider any approximation of the data. For problem (4.1)
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an equivalence relation between the true error ‖u − uh‖H1(Ω) and a residual-based
a posteriori error estimator can be proved [32].

For all triangles T ∈ Th we denote by E(T ) the set of its edges and by Eh,Ω the set
of all edges of the triangulation Th inside the domain Ω. For each edge E ∈ Eh,Ω, n̂E

represents a unit vector which is orthogonal to E and ωE =
⋃

{T ′: E∈E(T ′)} T
′. Given

E ∈ Eh,Ω and ϕ ∈ L2(ωE ) with ϕ|T ′ ∈ C0(T ′ ) for all T ′ ∈ ωE , we denote by [[ϕ]]E the
jump of ϕ across E in the direction n̂E . Finally, let us define the equation-residual
RT,h and the stress-jump JE,h for this problem,

RT,h = −�uh − f |T , JE,h =

[[
∂uh

∂ n̂E

]]
E

,

and the local and global error estimators,

η2
R,T = C2

0 ‖RT,h ‖2
L2(T ) +C2

1

∑
E∈E(T ) ∩Eh,Ω

‖ JE,h ‖2
L2(E), η2

Ω
=

∑
T∈Th

η2
R,T .

The following equivalence relation between the global error estimator and the true
error holds: c η2

Ω
≤ ‖uh − u ‖2

H1(Ω) ≤ C η2
Ω
.

We refer to the online manual of the code [1] or to [30] for a detailed description
of the adaptive methods implemented in ALBERTA. We are presenting results ob-
tained applying the following strategies: uniform refinement, maximum strategy (MS),
equidistribution strategy (ES), and guaranteed error reduction strategy (GERS). We
briefly recall these adaptive marking strategies for refinement:

MS: mark T with ηR,T > γ maxT ′∈Th
ηR,T ′ .

ES: mark T with ηR,T > θtol/
√
NT , where NT is the number of elements in Th.

GERS: mark T ∈ A such that
∑

T∈A R2
T,h > (1−θ∗)

2 η2
Ω
; see [24, 29] for more details

on the choice of the set A.
In all the numerical experiments, coarsening is allowed and we use the following
parameters, which correspond, except for polynomial degree and max iteration, to
the default values [1].

Member Value Member Value
polynomial degree 1 MS gamma 0.5
estimator C0 1.0 MS gamma c 0.1
estimator C1 1.0 ES theta 0.9
max iteration 200 ES theta c 0.2
refine bisection 2 GERS theta star 0.6
coarsen allowed 1 GERS nu 0.1
coarse bisections 2 GERS theta c 0.1

A.2. Numerical examples. Let us consider Examples 3 and 4 in section 4.
We will solve them by the adaptive FEMs implemented in ALBERTA and by uniform
refinement. These results should be compared with the corresponding ones from the
previous section.

Example 3. The solution is obtained using ALBERTA with tolerance tol = 4.0
(chosen to have a final H1-relative error close to the one in Table 4.10) starting from
a coarse grid with N = 2113 nodes. In Table A.1 we report the quantities δL2 and
δH1 ; in Table A.2 we report the constant c and the slope α of the least squares
approximations cNα of the relative errors with respect to the number of nodes. From
these data we can conclude that the behavior of the relative error on these meshes
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Table A.1

Example 3. Behavior of the adaptive FEMs, number of nodes, and relative errors in some
adaptive iterations.

MS
Iter. N δL2(Ω) δH1(Ω)

0 2113 8.078e+1 1.302e+1
1 2225 7.277e+1 1.304e+1
2 2337 3.669e+1 6.010e+0
3 2556 2.495e+1 5.710e+0
4 2740 5.934e+1 6.950e+0
5 2698 6.171e+1 7.276e+0
6 3112 2.783e+1 4.193e+0
7 2960 2.289e+1 3.893e+0
8 3259 8.540e+0 3.157e+0
9 3243 9.822e+0 3.299e+0
10 4612 9.427e+0 2.224e+0
11 4381 1.251e+1 2.387e+0
12 4825 3.928e+0 1.649e+0
13 6492 5.164e+0 1.247e+0
14 6894 3.990e+0 1.083e+0
15 8328 2.995e+0 8.471e−1
16 8174 2.841e+0 8.480e−1
17 13092 7.083e−1 4.777e−1
18 19644 6.209e−1 3.338e−1
19 23163 4.434e−1 2.843e−1
20 37020 1.218e−1 1.972e−1
21 53319 3.960e−2 1.527e−1
22 88401 2.313e−2 1.091e−1
23 124269 3.768e−2 9.011e−2
24 234983 1.169e−2 6.331e−2
25 358596 5.962e−3 5.065e−2
26 684219 4.500e−3 3.621e−2

ES
Iter. N δL2(Ω) δH1(Ω)

0 2113 8.072e+1 1.301e+1
1 8275 2.249e+1 5.370e+0
2 26441 1.684e+1 4.482e+0
3 74534 9.302e+0 1.734e+0
4 98914 1.656e+0 7.136e−1
5 87681 2.430e−1 2.967e−1
6 96674 5.811e−3 1.507e−1
7 224574 2.216e−3 7.641e−2
8 605245 2.851e−3 3.968e−2

GERS
Iter. N δL2(Ω) δH1(Ω)

0 2113 8.112e+1 1.305e+1
1 2142 5.293e+1 9.553e+0
2 2155 4.849e+1 9.077e+0
3 2195 9.724e+1 1.405e+1
4 2220 7.840e+1 1.329e+1
5 2264 4.305e+1 9.828e+0
6 2368 3.599e+1 6.064e+0
7 2464 6.333e+1 7.928e+0
8 2571 3.220e+1 6.013e+0
9 2699 4.957e+1 7.004e+0
10 3041 3.443e+1 5.664e+0
11 3150 2.478e+1 4.443e+0
12 3560 1.408e+1 3.039e+0
13 4056 2.697e+1 3.304e+0
14 16093 4.259e+0 1.138e+0
15 16744 1.689e+0 9.141e−1
16 17723 1.496e+0 7.300e−1
17 18864 1.874e+0 6.714e−1
18 20824 1.175e+0 5.223e−1
19 22958 1.178e+0 4.425e−1
20 26229 6.394e−1 3.589e−1
21 31278 2.613e−1 2.814e−1
22 36930 2.037e−1 2.306e−1
23 44012 7.848e−2 1.961e−1
24 51949 9.507e−2 1.703e−1
25 69388 6.032e−2 1.350e−1
26 84972 4.188e−2 1.161e−1
27 105211 2.095e−2 1.015e−1
28 130982 2.128e−2 8.935e−2
29 179451 1.380e−2 7.456e−2
30 257101 1.177e−2 6.060e−2
31 337177 7.635e−3 5.243e−2
32 474162 8.456e−3 4.390e−2

is still far from the asymptotic one. Comparing results reported in Table A.1 with
the results of Table 4.10 we can clearly see the very effective capability of a wavelets
method to catch and resolve sharp structures and singularities. The comparison of the
number of basis functions (DOF) between the two methods is not necessarily related
to the computational cost. In fact, the task of assembling the linear system is usually
more expensive for wavelet codes than for FEMs. Moreover, the state of the art for
the finite element codes is widely more assessed than for the few and recent wavelets
codes, and many improvements may be possible.

Example 4. The solution is obtained using tolerance tol = 0.03, starting from
a coarse grid with N = 2113 nodes. The final relative errors are δL2(Ω) ≈ 3e−4 and
δH1(Ω) ≈ 5e−3 for the three adaptive methods considered. In Table A.3 (compare
with Table 4.12), we report the data of the least squares approximations cNα of
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Table A.2

Example 3. Comparison of constants in the error decay.

Theoretical Computed
uniform uniform

L2 cu0N
−5/6+ε 4.482e+3N−0.628

H1 cu1N
−1/3+ε 6.291e+2N−0.503

Theoretical Computed
adaptive adaptive

MS L2 ca0N
−1 3.067e+7N−1.777

H1 ca1N
−1/2 1.221e+4N−1.008

ES L2 ca0N
−1 2.223e+9N−2.031

H1 ca1N
−1/2 1.120e+5N−1.097

GERS L2 ca0N
−1 9.485e+7N−1.858

H1 ca1N
−1/2 3.816e+4N−1.101

Table A.3

Example 4. Comparison of constants in the error decay.

Theoretical Computed
uniform uniform

L2 cu0N
−5/6+ε 4.831N−0.752

H1 cu1N
−1/3+ε 2.972N−0.438

Theoretical Computed
adaptive adaptive

MS L2 ca0N
−1 2.864N−0.717

H1 ca1N
−1/2 6.198N−0.551

ES L2 ca0N
−1 5.930N−0.801

H1 ca1N
−1/2 4.201N−0.491

GERS L2 ca0N
−1 4.267N−0.760

H1 ca1N
−1/2 6.178N−0.552

the relative errors in L2- and H1-norms obtained by the adaptive algorithms and a
uniform refinement. In this case, as for the ADWEM algorithm, we note a very good
agreement between the theoretical values and the obtained ones for the H1-norm [9],
while for the L2-norm we have a small mismatch and the slope is closer to the expected
one for a linear approximation technique (uniform refinement) than to the expected
one for a nonlinear approximation technique (adaptivity).
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