We discuss some properties of surfaces in R3 whose unit normal has constant angle with an assigned direction field. The constant angle condition can be rewritten as an Hamilton-Jacobi equation correlating the surface and the direction field. We focus on examples motivated by the physics of interfaces in liquid crystals and of layered fluids, and discuss the properties of the constant-angle surfaces when the direction field is singular along a line (disclination) or at a point (hedgehog defect).
Constant-angle surfaces in liquid crystals / DI SCALA, ANTONIO JOSE'; Cermelli, P.. - In: PHILOSOPHICAL MAGAZINE. - ISSN 1478-6435. - STAMPA. - 87:12(2007), pp. 1871-1888. [10.1080/14786430601110364]
Constant-angle surfaces in liquid crystals
DI SCALA, ANTONIO JOSE';
2007
Abstract
We discuss some properties of surfaces in R3 whose unit normal has constant angle with an assigned direction field. The constant angle condition can be rewritten as an Hamilton-Jacobi equation correlating the surface and the direction field. We focus on examples motivated by the physics of interfaces in liquid crystals and of layered fluids, and discuss the properties of the constant-angle surfaces when the direction field is singular along a line (disclination) or at a point (hedgehog defect).File | Dimensione | Formato | |
---|---|---|---|
N21.pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
547.98 kB
Formato
Adobe PDF
|
547.98 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/1500791
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo