In this paper, we address the issue of computing fast lower bounds for the Bin Packing problem, i.e., bounds that have a computational complexity dominated by the complexity of ordering the items by non-increasing values of their volume.We introduce new classes of fast lower bounds with improved asymptotic worst-case performance compared to well-known results for similar computational effort. Experimental results on a large set of problem instances indicate that the proposed bounds reduce both the deviation from the optimum and the computational effort.
New Bin Packing Fast Lower Bounds / Crainic, T. G.; Perboli, Guido; Pezzuto, M; Tadei, Roberto. - In: COMPUTERS & OPERATIONS RESEARCH. - ISSN 0305-0548. - STAMPA. - 34:11(2007), pp. 3439-3457. [10.1016/j.cor.2006.02.007]
New Bin Packing Fast Lower Bounds
PERBOLI, Guido;TADEI, Roberto
2007
Abstract
In this paper, we address the issue of computing fast lower bounds for the Bin Packing problem, i.e., bounds that have a computational complexity dominated by the complexity of ordering the items by non-increasing values of their volume.We introduce new classes of fast lower bounds with improved asymptotic worst-case performance compared to well-known results for similar computational effort. Experimental results on a large set of problem instances indicate that the proposed bounds reduce both the deviation from the optimum and the computational effort.File | Dimensione | Formato | |
---|---|---|---|
lb_bpp_comp_or_final.pdf
accesso aperto
Tipologia:
1. Preprint / submitted version [pre- review]
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
221.29 kB
Formato
Adobe PDF
|
221.29 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/1485018
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo