We prove that the quasilinear equation $-\Delta_p u=\lambda V |u|^{p-2}u+g(x,u)$, with $g$ subcritical and $p$-superlinear at $0$ and at infinity, admits a nontrivial weak solution $u\in W^{1,p}_0(\Omega)$ for any $\lambda\in\R$. A minimax approach, allowing also an estimate of the corresponding critical level, is used. New linking structures, associated to certain variational eigenvalues of $-\Delta_p u=\lambda V |u|^{p-2}u$, are recognized, even in absence of any direct sum decomposition of $W^{1,p}_0(\Omega)$ related to the eigenvalue itself.
Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity / Lancelotti, Sergio; Degiovanni, M.. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - STAMPA. - 24:6(2007), pp. 907-919. [10.1016/j.anihpc.2006.06.007]
Linking over cones and nontrivial solutions for p-Laplace equations with p-superlinear nonlinearity
LANCELOTTI, SERGIO;
2007
Abstract
We prove that the quasilinear equation $-\Delta_p u=\lambda V |u|^{p-2}u+g(x,u)$, with $g$ subcritical and $p$-superlinear at $0$ and at infinity, admits a nontrivial weak solution $u\in W^{1,p}_0(\Omega)$ for any $\lambda\in\R$. A minimax approach, allowing also an estimate of the corresponding critical level, is used. New linking structures, associated to certain variational eigenvalues of $-\Delta_p u=\lambda V |u|^{p-2}u$, are recognized, even in absence of any direct sum decomposition of $W^{1,p}_0(\Omega)$ related to the eigenvalue itself.File | Dimensione | Formato | |
---|---|---|---|
abstract.pdf
accesso aperto
Tipologia:
Abstract
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
28.41 kB
Formato
Adobe PDF
|
28.41 kB | Adobe PDF | Visualizza/Apri |
Linking over cones etc..pdf
accesso aperto
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
210 kB
Formato
Adobe PDF
|
210 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/1447682
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo