A new experimental and post-analysis procedure to perform tensile-loading experiments on nanofibers, e.g., carbon nanotubes (CNTs) or nanowires, is presented. The procedure has been applied to multiwalled carbon nanotubes (MWCNTs). At this time, we consider the corresponding results on fracture strength (strain and Young's modulus) as preliminary, but these preliminary results strongly suggest the presence of defects in the tested nanotubes. Assuming defects like clusters of adjacent vacancies (e.g., atomistic blunt cracks) we tried to rationalize the preliminary experimental data by applying Quantized Fracture Mechanics (QFM). So far the experimental results are not sufficient to validate this approach, and the next step of this research is to obtain much more data, using our new methodology, to further test QFM, including possibly introducing atomistic defects of well-known size and shape in a controlled way.

Experimental tests on fracture strength of nanotubes / R. S., Ruoff; L., Calabri; W., Ding; Pugno, Nicola. - In: REVIEWS ON ADVANCED MATERIALS SCIENCE. - ISSN 1606-5131. - 10:(2005), pp. 110-117. (Intervento presentato al convegno 2nd Int. Conf. on Nanomaterials and Nanotechnologies, NN2005 tenutosi a Crete (GRC) nel June 14-18, 2005).

Experimental tests on fracture strength of nanotubes

PUGNO, Nicola
2005

Abstract

A new experimental and post-analysis procedure to perform tensile-loading experiments on nanofibers, e.g., carbon nanotubes (CNTs) or nanowires, is presented. The procedure has been applied to multiwalled carbon nanotubes (MWCNTs). At this time, we consider the corresponding results on fracture strength (strain and Young's modulus) as preliminary, but these preliminary results strongly suggest the presence of defects in the tested nanotubes. Assuming defects like clusters of adjacent vacancies (e.g., atomistic blunt cracks) we tried to rationalize the preliminary experimental data by applying Quantized Fracture Mechanics (QFM). So far the experimental results are not sufficient to validate this approach, and the next step of this research is to obtain much more data, using our new methodology, to further test QFM, including possibly introducing atomistic defects of well-known size and shape in a controlled way.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1435082
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo