The zero-temperature phase diagram of a Bose-Einstein condensate confined in realistic one-dimensional l-periodic optical superlattices is investigated. The system of interacting bosons is modeled in terms of a Bose-Hubbard Hamiltonian whose site-dependent local potentials and hopping amplitudes reflect the periodicity of the lattice partition in l-site cells. Relying on the exact mapping between the hardcore limit of the boson Hamiltonian and the model of spinless noninteracting fermions, incompressible insulator domains are shown to exist for rational fillings that are predicted to be compressible in the atomic limit. The corresponding boundaries, qualitatively described in a multiple-site mean-field approach, are shown to exhibit an unusual loophole shape. A more quantitative description of the loophole domain boundaries at half filling for the special case l = 2 is supplied in terms of analytic strong-coupling expansions and quantum Monte Carlo simulations.

Fractional-filling loophole insulator domains for ultracold bosons in optical superlattices / Buonsante, Pierfrancesco; Penna, Vittorio; Vezzani, A.. - In: PHYSICAL REVIEW A. - ISSN 1050-2947. - 70:(2004), pp. 061603-1-061603-4. [10.1103/PhysRevA.70.061603]

Fractional-filling loophole insulator domains for ultracold bosons in optical superlattices

BUONSANTE, Pierfrancesco;PENNA, Vittorio;
2004

Abstract

The zero-temperature phase diagram of a Bose-Einstein condensate confined in realistic one-dimensional l-periodic optical superlattices is investigated. The system of interacting bosons is modeled in terms of a Bose-Hubbard Hamiltonian whose site-dependent local potentials and hopping amplitudes reflect the periodicity of the lattice partition in l-site cells. Relying on the exact mapping between the hardcore limit of the boson Hamiltonian and the model of spinless noninteracting fermions, incompressible insulator domains are shown to exist for rational fillings that are predicted to be compressible in the atomic limit. The corresponding boundaries, qualitatively described in a multiple-site mean-field approach, are shown to exhibit an unusual loophole shape. A more quantitative description of the loophole domain boundaries at half filling for the special case l = 2 is supplied in terms of analytic strong-coupling expansions and quantum Monte Carlo simulations.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1404162
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo