Poly(N-isopropylacrylamide) (PNIPAM) in dilute aqueous solution undergoes a collapse transition from coil to globule on increasing temperature. Such coil-to-globule collapse is usually considered analogous to the cold renaturation of small globular proteins. In this paper we propose a theoretical approach that is able to reproduce, in a semi-quantitative way, the unusual behavior of PNIPAM, and the observed thermodynamic proper-ties. The procedure is based on two main steps: (i) the characterization of single monomer hydration thermodynamics, interpreted by a balance between the removal of monomer-monomer interactions and the addition of water-monomer interactions, and (ii) a simplified analysis of a lattice self-avoiding walk (SAW) model, which allows to account for the configurational entropy in a controlled way, and hence to relate the microscopic interactions to the,macroscopic" behavior of the polymer chain. The results show that the temperature dependence and magnitude of the interaction parameters that best fit experimental data validate a recently proposed qualitative interpretation of the mechanism of collapse transition for PNIPAM. The latter result turns out to be relevant to support the analogy with the cold renaturation of small globular proteins, and to clarify some important aspects of protein then-no dynamics.
Lattice model for polymer hydration: Collapse of poly(N-isopropylacrylamide) / Bruscolini, P; Buzano, Carla; Pelizzola, Alessandro; Pretti, M.. - In: MACROMOLECULAR SYMPOSIA. - ISSN 1022-1360. - 181:(2002), pp. 261-273. (Intervento presentato al convegno 5th Osterrechische Polymertage Chemical and Physical Aspects of Polymer Science and Engineering Symposium) [10.1002/1521-3900(200205)181:1<261::AID-MASY261>3.0.CO;2-Z].
Lattice model for polymer hydration: Collapse of poly(N-isopropylacrylamide)
BUZANO, Carla;PELIZZOLA, ALESSANDRO;PRETTI M.
2002
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) in dilute aqueous solution undergoes a collapse transition from coil to globule on increasing temperature. Such coil-to-globule collapse is usually considered analogous to the cold renaturation of small globular proteins. In this paper we propose a theoretical approach that is able to reproduce, in a semi-quantitative way, the unusual behavior of PNIPAM, and the observed thermodynamic proper-ties. The procedure is based on two main steps: (i) the characterization of single monomer hydration thermodynamics, interpreted by a balance between the removal of monomer-monomer interactions and the addition of water-monomer interactions, and (ii) a simplified analysis of a lattice self-avoiding walk (SAW) model, which allows to account for the configurational entropy in a controlled way, and hence to relate the microscopic interactions to the,macroscopic" behavior of the polymer chain. The results show that the temperature dependence and magnitude of the interaction parameters that best fit experimental data validate a recently proposed qualitative interpretation of the mechanism of collapse transition for PNIPAM. The latter result turns out to be relevant to support the analogy with the cold renaturation of small globular proteins, and to clarify some important aspects of protein then-no dynamics.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/1404014
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo