The circulation functional relative to the potential flow past two adjacent lifting sections is studied for two cases. In the first case we consider two adjacent circles. The circulation is computed as a function of the displacement of the secondary circle along the axis joining the two centers and of the angle of attack of the secondary circle. The gradient of such functional is computed by deriving a set of elliptic functions with respect both to their argument and to their period. In the second case studied, we considered a wing-flap configuration. The circulation is computed by some implicit mappings, whose differentials with respect to the variation of the geometrical configuration in the physical space are found by divided differences. Configurations giving rise to local maxima and minima in the circulation manifold are presented.

On the Circulation Manifold for Two Adjacent Lifting Sections / Zannetti, Luca; Iollo, Angelo. - In: ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK. - ISSN 0044-2267. - 79:10(1999), pp. 685-692. [10.1002/(SICI)1521-4001(199910)79:10<685::AID-ZAMM685>3.0.CO;2-X]

On the Circulation Manifold for Two Adjacent Lifting Sections

ZANNETTI, LUCA;IOLLO, ANGELO
1999

Abstract

The circulation functional relative to the potential flow past two adjacent lifting sections is studied for two cases. In the first case we consider two adjacent circles. The circulation is computed as a function of the displacement of the secondary circle along the axis joining the two centers and of the angle of attack of the secondary circle. The gradient of such functional is computed by deriving a set of elliptic functions with respect both to their argument and to their period. In the second case studied, we considered a wing-flap configuration. The circulation is computed by some implicit mappings, whose differentials with respect to the variation of the geometrical configuration in the physical space are found by divided differences. Configurations giving rise to local maxima and minima in the circulation manifold are presented.
File in questo prodotto:
File Dimensione Formato  
1401718.pdf

non disponibili

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 292.43 kB
Formato Adobe PDF
292.43 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1401718
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo