In this note we give proofs of the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup $G \subset Gl(n,\rr)$ is closed. Moreover, if $G$ admits an invariant bilinear form of Lorentzian signature, $G$ is maximal, i.e. it is conjugated to $SO(1,n-1)_0$. We calculate the vector space of $G$-invariant symmetric bilinear forms, show that it is at most $3$-dimensional, and determine the maximal stabilizers for each dimension. Finally, we give some applications and present some open problems.

Geometry applications of irreducible representations of Lie Groups / DI SCALA, ANTONIO JOSE'; Thomas, Leistner; Thomas, Neukichner - In: Handbook of Pseudo-Riemannian Geometry and Supersymmetry / VICENTE CORTES. - STAMPA. - Zurich : European Mathematical Society - Publishing House, 2010. - ISBN 9783037190791. - pp. 629-651 [10.4171/079-1/18]

Geometry applications of irreducible representations of Lie Groups

DI SCALA, ANTONIO JOSE';
2010

Abstract

In this note we give proofs of the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup $G \subset Gl(n,\rr)$ is closed. Moreover, if $G$ admits an invariant bilinear form of Lorentzian signature, $G$ is maximal, i.e. it is conjugated to $SO(1,n-1)_0$. We calculate the vector space of $G$-invariant symmetric bilinear forms, show that it is at most $3$-dimensional, and determine the maximal stabilizers for each dimension. Finally, we give some applications and present some open problems.
2010
9783037190791
Handbook of Pseudo-Riemannian Geometry and Supersymmetry
File in questo prodotto:
File Dimensione Formato  
N22.pdf

accesso aperto

Descrizione: The editor allowed to put the paper in PORTO. See below. Hola Antonio, estoy bien. Espero que tu también. No hay ningún inconveniente. Un cordial saludo, Vicente On 12/11/2012 10:30 AM, Antonio Jose Di Scala wrote: Hola Vicente, espero que estes muy bien. Mi instituto, el Politecnico di Torino, tiene un Open Access Repository : http://porto.polito.it/ y ultimamente me insisten para que cargue mis articulos. Muchas revistas me dejan poner el post-print bajo ciertas condiciones. Por ejemplo, las del `Abhandlungen' de Hamburgo las veo en: http://www.sherpa.ac.uk/romeo/search.php?issn=0025-5858 Te queria preguntar por el articulo: Geometric applications of irreducible representations of Lie groups. Handbook of pseudo-Riemannian geometry and supersymmetry, 629-651, IRMA Lect. Math. Theor. Phys., 16, Eur. Math. Soc., Zürich, 2010. lo puedo poner en el Repository del Politecnico y/o hay alguna condicion que debo respetar? Desde ya te agradesco por la respuesta, Un saludo cordial, Antonio Antonio J. Di Scala. Dipartimento di Scienze Matematiche. Politecnico di Torino
Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: PUBBLICO - Tutti i diritti riservati
Dimensione 316.14 kB
Formato Adobe PDF
316.14 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/1392433
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo