In this note we give proofs of the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup $G \subset Gl(n,\rr)$ is closed. Moreover, if $G$ admits an invariant bilinear form of Lorentzian signature, $G$ is maximal, i.e. it is conjugated to $SO(1,n-1)_0$. We calculate the vector space of $G$-invariant symmetric bilinear forms, show that it is at most $3$-dimensional, and determine the maximal stabilizers for each dimension. Finally, we give some applications and present some open problems.
Geometry applications of irreducible representations of Lie Groups / DI SCALA, ANTONIO JOSE'; Thomas, Leistner; Thomas, Neukichner - In: Handbook of Pseudo-Riemannian Geometry and Supersymmetry / VICENTE CORTES. - STAMPA. - Zurich : European Mathematical Society - Publishing House, 2010. - ISBN 9783037190791. - pp. 629-651 [10.4171/079-1/18]
Geometry applications of irreducible representations of Lie Groups
DI SCALA, ANTONIO JOSE';
2010
Abstract
In this note we give proofs of the following three algebraic facts which have applications in the theory of holonomy groups and homogeneous spaces: Any irreducibly acting connected subgroup $G \subset Gl(n,\rr)$ is closed. Moreover, if $G$ admits an invariant bilinear form of Lorentzian signature, $G$ is maximal, i.e. it is conjugated to $SO(1,n-1)_0$. We calculate the vector space of $G$-invariant symmetric bilinear forms, show that it is at most $3$-dimensional, and determine the maximal stabilizers for each dimension. Finally, we give some applications and present some open problems.File | Dimensione | Formato | |
---|---|---|---|
N22.pdf
accesso aperto
Descrizione: The editor allowed to put the paper in PORTO. See below.
Hola Antonio,
estoy bien. Espero que tu también. No hay ningún inconveniente.
Un cordial saludo,
Vicente
On 12/11/2012 10:30 AM, Antonio Jose Di Scala wrote:
Hola Vicente, espero que estes muy bien.
Mi instituto, el Politecnico di Torino, tiene un Open Access Repository :
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
PUBBLICO - Tutti i diritti riservati
Dimensione
316.14 kB
Formato
Adobe PDF
|
316.14 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/1392433
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo