DEQUINO, ALBERTO
DEQUINO, ALBERTO
Dipartimento di Automatica e Informatica
053382
Mostra
records
Risultati 1 - 4 di 4 (tempo di esecuzione: 0.011 secondi).
Optimizing BFloat16 Deployment of Tiny Transformers on Ultra-Low Power Extreme Edge SoCs
2025 Dequino, Alberto; Bompani, Luca; Benini, Luca; Conti, Francesco
Compressed Latent Replays for Lightweight Continual Learning on Spiking Neural Networks
2024 Dequino, Alberto; Carpegna, Alessio; Nadalini, Davide; Savino, Alessandro; Benini, Luca; Di Carlo, Stefano; Conti, Francesco
ViT-LR: Pushing the Envelope for Transformer-Based On-Device Embedded Continual Learning
2022 Dequino, A; Conti, Francesco; Benini, Luca
TCN Mapping Optimization for Ultra-Low Power Time-Series Edge Inference
2021 Burrello, Alessio; Dequino, Alberto; Jahier Pagliari, Daniele; Conti, Franceso; Zanghieri, Marcello; Macii, Enrico; Benini, Luca; Poncino, Massimo
Citazione | Data di pubblicazione | Autori | File |
---|---|---|---|
Optimizing BFloat16 Deployment of Tiny Transformers on Ultra-Low Power Extreme Edge SoCs / Dequino, Alberto; Bompani, Luca; Benini, Luca; Conti, Francesco. - In: JOURNAL OF LOW POWER ELECTRONICS AND APPLICATIONS. - ISSN 2079-9268. - ELETTRONICO. - 15:1(2025). [10.3390/jlpea15010008] | 1-gen-2025 | Dequino, Alberto + | jlpea-15-00008.pdf |
Compressed Latent Replays for Lightweight Continual Learning on Spiking Neural Networks / Dequino, Alberto; Carpegna, Alessio; Nadalini, Davide; Savino, Alessandro; Benini, Luca; Di Carlo, Stefano; Conti, Francesco. - ELETTRONICO. - 1:(2024), pp. 240-245. (Intervento presentato al convegno 2024 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) tenutosi a Knoxville, TN (USA) nel 01-03 July 2024) [10.1109/isvlsi61997.2024.00052]. | 1-gen-2024 | Dequino, AlbertoCarpegna, AlessioNadalini, DavideSavino, AlessandroDi Carlo, Stefano + | Compressed_Latent_Replays_for_Lightweight_Continual_Learning_on_Spiking_Neural_Networks.pdf; Continual_Spiking_Prosciutti_Revival__ISVLSI_.pdf |
ViT-LR: Pushing the Envelope for Transformer-Based On-Device Embedded Continual Learning / Dequino, A; Conti, Francesco; Benini, Luca. - (2022), pp. 1-6. (Intervento presentato al convegno 2022 IEEE 13th International Green and Sustainable Computing Conference (IGSC) tenutosi a Pittsburgh, PA (USA) nel 24-25 October 2022) [10.1109/IGSC55832.2022.9969361]. | 1-gen-2022 | Dequino, A + | ViT-LR_Pushing_the_Envelope_for_Transformer-Based_On-Device_Embedded_Continual_Learning.pdf |
TCN Mapping Optimization for Ultra-Low Power Time-Series Edge Inference / Burrello, Alessio; Dequino, Alberto; Jahier Pagliari, Daniele; Conti, Franceso; Zanghieri, Marcello; Macii, Enrico; Benini, Luca; Poncino, Massimo. - ELETTRONICO. - 2021:(2021), pp. 1-6. (Intervento presentato al convegno 2021 IEEE/ACM International Symposium on Low Power Electronics and Design, ISLPED 2021 tenutosi a USA nel 2021) [10.1109/ISLPED52811.2021.9502494]. | 1-gen-2021 | Burrello, AlessioDequino, AlbertoJahier Pagliari, DanieleMacii, EnricoPoncino, Massimo + | ISPLED21___TCN_Library.pdf; TCN_Mapping_Optimization_for_Ultra-Low_Power_Time-Series_Edge_Inference.pdf |