This investigation aimed to determine whether altering metal microstructure by introducing special grain boundaries through annealing could reduce the corrosion damage observed in the presence of pyruvate. Oxygen-free pure copper coupons were annealed at 325°C, 475°C and 950°C for varying durations to optimize the formation of ∑3 special boundaries. Samples annealed at 475°C for 30 min had the highest yield of such boundaries, thus, were selected for testing. Annealed and as-received, untreated, copper specimens were exposed under stagnant conditions to an aqueous oxic solution of sodium pyruvate for 30 days. Microscopy, spectroscopy, and electrochemical methods were employed to characterize the specimens prior to and following pyruvate exposure. Pyruvate caused localized corrosion of copper seen as micro pitting, irrespective of the specimen treatment. Reduced pitting severity and a decrease in the corrosion rate by 32 % were recorded for annealed coupons when compared to as-received ones. It is proposed that the difference in thickness and morphology of the oxide layer between annealed and as-received coupons, evidenced through electrochemical techniques, is the likely contributor to the improved corrosion resistance of annealed coupons.
Mitigation of copper corrosion in the presence of an organic oxyanion through microstructural optimization / Acharjee, Amit; Ghiara, Giorgia; Beech, Iwona B.; Fields, Matthew W.; Amendola, Roberta. - In: CORROSION SCIENCE. - ISSN 0010-938X. - 257:(2025). [10.1016/j.corsci.2025.113358]
Mitigation of copper corrosion in the presence of an organic oxyanion through microstructural optimization
Ghiara, Giorgia;
2025
Abstract
This investigation aimed to determine whether altering metal microstructure by introducing special grain boundaries through annealing could reduce the corrosion damage observed in the presence of pyruvate. Oxygen-free pure copper coupons were annealed at 325°C, 475°C and 950°C for varying durations to optimize the formation of ∑3 special boundaries. Samples annealed at 475°C for 30 min had the highest yield of such boundaries, thus, were selected for testing. Annealed and as-received, untreated, copper specimens were exposed under stagnant conditions to an aqueous oxic solution of sodium pyruvate for 30 days. Microscopy, spectroscopy, and electrochemical methods were employed to characterize the specimens prior to and following pyruvate exposure. Pyruvate caused localized corrosion of copper seen as micro pitting, irrespective of the specimen treatment. Reduced pitting severity and a decrease in the corrosion rate by 32 % were recorded for annealed coupons when compared to as-received ones. It is proposed that the difference in thickness and morphology of the oxide layer between annealed and as-received coupons, evidenced through electrochemical techniques, is the likely contributor to the improved corrosion resistance of annealed coupons.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3006208
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
