Crack initiation in flattened disks under compression containing either a central or eccentric circular hole is investigated through the Finite Fracture Mechanics (FFM) approach. An implementation of the FFM criterion based on digital image correlation (DIC) full-field measurement is proposed. The coupling between FFM and DIC is provided through boundary conditions taken from the measured displacement fields. This approach offers a more accurate representation of the actual loading conditions compared to the use of idealized prescribed force or displacement in standard FFM implementations. Furthermore, by exploiting the value of the critical energy release rate obtained from the stable crack growth phase analysis, this method enables precise estimations of the inherent material strength and critical crack advance.

Evaluation of fracture properties by coupling digital image correlation and Finite Fracture Mechanics / Ferrian, Francesco; Sapora, Alberto; Estevez, Rafael; Doitrand, Aurélien. - In: INTERNATIONAL JOURNAL OF FRACTURE. - ISSN 0376-9429. - 249:4(2025), pp. 1-16. [10.1007/s10704-025-00885-9]

Evaluation of fracture properties by coupling digital image correlation and Finite Fracture Mechanics

Ferrian, Francesco;Sapora, Alberto;
2025

Abstract

Crack initiation in flattened disks under compression containing either a central or eccentric circular hole is investigated through the Finite Fracture Mechanics (FFM) approach. An implementation of the FFM criterion based on digital image correlation (DIC) full-field measurement is proposed. The coupling between FFM and DIC is provided through boundary conditions taken from the measured displacement fields. This approach offers a more accurate representation of the actual loading conditions compared to the use of idealized prescribed force or displacement in standard FFM implementations. Furthermore, by exploiting the value of the critical energy release rate obtained from the stable crack growth phase analysis, this method enables precise estimations of the inherent material strength and critical crack advance.
File in questo prodotto:
File Dimensione Formato  
2025_IJF_DIC.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 2.87 MB
Formato Adobe PDF
2.87 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3005710