A classical result of von Staudt states that if eight planes osculate a twisted cubic curve and we divide them into two groups of four, then the eight vertices of the corresponding tetrahedra lie on a twisted cubic curve. In the current paper, we give an alternative proof of this result using modern tools, and at the same time we prove the analogous result for rational normal curves in any projective space. This higher dimensional generalization was claimed without proof in a paper of H.S. White in 1921.

Simplices Osculating Rational Normal Curves / Caminata, A.; Carlini, E.; Schaffler, L.. - In: VIETNAM JOURNAL OF MATHEMATICS. - ISSN 2305-221X. - (2025). [10.1007/s10013-025-00737-y]

Simplices Osculating Rational Normal Curves

Carlini E.;
2025

Abstract

A classical result of von Staudt states that if eight planes osculate a twisted cubic curve and we divide them into two groups of four, then the eight vertices of the corresponding tetrahedra lie on a twisted cubic curve. In the current paper, we give an alternative proof of this result using modern tools, and at the same time we prove the analogous result for rational normal curves in any projective space. This higher dimensional generalization was claimed without proof in a paper of H.S. White in 1921.
File in questo prodotto:
File Dimensione Formato  
s10013-025-00737-y.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 321.52 kB
Formato Adobe PDF
321.52 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3005489