In this methods article, we provide a flexible but easy-to-use implementation of direct coupling analysis (DCA) based on Boltzmann machine learning, together with a tutorial on how to use it. The package adabmDCA 2.0 is available in different programming languages (C formula presented , Julia, Python) usable on different architectures (single-core and multicore CPU, GPU) using a common front-end interface. In addition to several learning protocols for dense and sparse generative DCA models, it allows to directly address common downstream tasks like residue-residue contact prediction, mutational-effect prediction, scoring of sequence libraries, and generation of artificial sequences for sequence design. It is readily applicable to protein and RNA sequence data.
adabmDCA 2.0—A Flexible but Easy-to-Use Package for Direct Coupling Analysis / Rosset, Lorenzo; Netti, Roberto; Muntoni, Anna Paola; Weigt, Martin; Zamponi, Francesco (METHODS IN MOLECULAR BIOLOGY). - In: Protein Evolution[s.l] : Springer, 2026. - ISBN 9781071648278. - pp. 83-104 [10.1007/978-1-0716-4828-5_6]
adabmDCA 2.0—A Flexible but Easy-to-Use Package for Direct Coupling Analysis
Netti, Roberto;Muntoni, Anna Paola;Zamponi, Francesco
2026
Abstract
In this methods article, we provide a flexible but easy-to-use implementation of direct coupling analysis (DCA) based on Boltzmann machine learning, together with a tutorial on how to use it. The package adabmDCA 2.0 is available in different programming languages (C formula presented , Julia, Python) usable on different architectures (single-core and multicore CPU, GPU) using a common front-end interface. In addition to several learning protocols for dense and sparse generative DCA models, it allows to directly address common downstream tasks like residue-residue contact prediction, mutational-effect prediction, scoring of sequence libraries, and generation of artificial sequences for sequence design. It is readily applicable to protein and RNA sequence data.| File | Dimensione | Formato | |
|---|---|---|---|
|
2501.18456v1.pdf
embargo fino al 31/12/2026
Descrizione: arXiv version
Tipologia:
2. Post-print / Author's Accepted Manuscript
Licenza:
Pubblico - Tutti i diritti riservati
Dimensione
531.56 kB
Formato
Adobe PDF
|
531.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
978-1-0716-4828-5_6 (1).pdf
accesso riservato
Descrizione: Versione editoriale definitiva
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Non Pubblico - Accesso privato/ristretto
Dimensione
829.3 kB
Formato
Adobe PDF
|
829.3 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3005149
