A classical and long-staying problem addressed, among others, by Calabi and Chern, is that to find a complete list of mutually non-isometric Kähler-Einstein manifolds immersed in a finite-dimensional Kähler space form. We address the same problem in the para-Kähler context and, then, we find a list of mutually non-isometric toric para-Kähler manifolds analytically immersed in a finite-dimensional para-Kähler space form.
Toric para-Kähler-Einstein manifolds immersed in para-Kähler space forms / Manno, Gianni; Salis, Filippo. - In: JOURNAL OF GEOMETRY AND PHYSICS. - ISSN 0393-0440. - 218:(2025), pp. 1-16. [10.1016/j.geomphys.2025.105688]
Toric para-Kähler-Einstein manifolds immersed in para-Kähler space forms
gianni manno;filippo salis
2025
Abstract
A classical and long-staying problem addressed, among others, by Calabi and Chern, is that to find a complete list of mutually non-isometric Kähler-Einstein manifolds immersed in a finite-dimensional Kähler space form. We address the same problem in the para-Kähler context and, then, we find a list of mutually non-isometric toric para-Kähler manifolds analytically immersed in a finite-dimensional para-Kähler space form.| File | Dimensione | Formato | |
|---|---|---|---|
|
manno SALIS j geom phys.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
720.26 kB
Formato
Adobe PDF
|
720.26 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3004766
