The dynamical behavior of switched affine systems is known to be more intricate than that of the well-studied switched linear systems, essentially due to the existence of distinct equilibrium points for each subsystem. First, under arbitrary switching rules, the stability analysis must be generally carried out with respect to a compact set with nonempty interior rather than to a singleton. We provide a novel proof technique for existence and outer approximation of attractive invariant sets of a switched affine system, under the hypothesis of global uniform stability of its linearization. On the other hand, considering dwell-time switching signals, forward invariant sets need not exist for this class of switched systems, even for stable ones. Hence, more general notions of stability/boundedness are introduced and studied, highlighting the relations of these concepts to the uniform stability of the linear part of the system under the same class of dwell-time switching signals. These results reveal the main differences and specificities of switched affine systems with respect to linear ones, providing a first step for the analysis of switched systems composed by subsystems not sharing the same equilibrium. Numerical methods based on linear matrix inequalities and sum-ofsquares programming are presented and illustrate the developed theory.

Stability of Switched Affine Systems: Arbitrary and Dwell-Time Switching / Della Rossa, Matteo; Egidio, Lucas N.; Jungers, Raphaël M.. - In: SIAM JOURNAL ON CONTROL AND OPTIMIZATION. - ISSN 0363-0129. - 61:4(2023), pp. 2165-2192. [10.1137/22m1482226]

Stability of Switched Affine Systems: Arbitrary and Dwell-Time Switching

Della Rossa, Matteo;
2023

Abstract

The dynamical behavior of switched affine systems is known to be more intricate than that of the well-studied switched linear systems, essentially due to the existence of distinct equilibrium points for each subsystem. First, under arbitrary switching rules, the stability analysis must be generally carried out with respect to a compact set with nonempty interior rather than to a singleton. We provide a novel proof technique for existence and outer approximation of attractive invariant sets of a switched affine system, under the hypothesis of global uniform stability of its linearization. On the other hand, considering dwell-time switching signals, forward invariant sets need not exist for this class of switched systems, even for stable ones. Hence, more general notions of stability/boundedness are introduced and studied, highlighting the relations of these concepts to the uniform stability of the linear part of the system under the same class of dwell-time switching signals. These results reveal the main differences and specificities of switched affine systems with respect to linear ones, providing a first step for the analysis of switched systems composed by subsystems not sharing the same equilibrium. Numerical methods based on linear matrix inequalities and sum-ofsquares programming are presented and illustrate the developed theory.
File in questo prodotto:
File Dimensione Formato  
22m1482226 (5).pdf

accesso riservato

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Non Pubblico - Accesso privato/ristretto
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
ContinuousTimeAffine.pdf

accesso aperto

Tipologia: 2. Post-print / Author's Accepted Manuscript
Licenza: Creative commons
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3004693