The transition toward sustainability in the electric power sector, driven by increasingly renewable integration, has amplified the need to understand complex market dynamics. This study addresses a critical gap in the existing literature by presenting a systematic and reproducible methodology for profiling generating-unit operators’ macro-behaviour in the Italian Ancillary Services market (MSD). Focusing on the Northern zone (NORD) during the pivotal period of 2022–2024, a stability-driven k-means clustering framework is applied to a dataset of capacity-normalized features from the day-ahead market (MGP), intraday market (MI), and MSD. The number of clusters is determined using the Gap Statistic with a 1-SE criterion and validated with bootstrap stability (Adjusted Rand Index), resulting in a robust and reproducible 13-group taxonomy. The use of up-to-date data (2022–2024) enabled a unique investigation into post-2021 market phenomena, including the effects of geopolitical events and extreme price volatility. The findings reveal clear operator-coherent archetypes ranging from units that mainly trade in the day-ahead market to specialists that monetize flexibility in the MSD. The analysis further highlights the dominance of thermoelectric and dispatchable hydro technologies in providing ancillary services, while illustrating varying degrees of responsiveness to price signals. The proposed taxonomy offers regulators and policymakers a practical tool to identify inefficiencies, monitor concentration risks, and inform future market design and policy decisions.
Unsupervised Profiling of Operator Macro-Behaviour in the Italian Ancillary Service Market via Stability-Driven k-Means / Hosseiniimani, Seyedmahmood; Khalili Param, Atefeh. - In: ENERGIES. - ISSN 1996-1073. - ELETTRONICO. - 18:(2025), p. https://www.mdpi.com/1996-1073/18/20/5446. [10.3390/en18205446]
Unsupervised Profiling of Operator Macro-Behaviour in the Italian Ancillary Service Market via Stability-Driven k-Means
seyedmahmood Hosseiniimani;
2025
Abstract
The transition toward sustainability in the electric power sector, driven by increasingly renewable integration, has amplified the need to understand complex market dynamics. This study addresses a critical gap in the existing literature by presenting a systematic and reproducible methodology for profiling generating-unit operators’ macro-behaviour in the Italian Ancillary Services market (MSD). Focusing on the Northern zone (NORD) during the pivotal period of 2022–2024, a stability-driven k-means clustering framework is applied to a dataset of capacity-normalized features from the day-ahead market (MGP), intraday market (MI), and MSD. The number of clusters is determined using the Gap Statistic with a 1-SE criterion and validated with bootstrap stability (Adjusted Rand Index), resulting in a robust and reproducible 13-group taxonomy. The use of up-to-date data (2022–2024) enabled a unique investigation into post-2021 market phenomena, including the effects of geopolitical events and extreme price volatility. The findings reveal clear operator-coherent archetypes ranging from units that mainly trade in the day-ahead market to specialists that monetize flexibility in the MSD. The analysis further highlights the dominance of thermoelectric and dispatchable hydro technologies in providing ancillary services, while illustrating varying degrees of responsiveness to price signals. The proposed taxonomy offers regulators and policymakers a practical tool to identify inefficiencies, monitor concentration risks, and inform future market design and policy decisions.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3004542
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
