Globally, winery wastewaters (WWWs) are estimated to account for about 62.5 billion L annually (2021), with COD levels up to 300,000 mg O2/L primarily attributed to residual ethanol, posing serious environmental concerns. Conventional treatments are effective in COD removal, but they often miss opportunities for energy recovery and resource valorization. This study investigates the aqueous phase reforming (APR) of ethanol-rich wastewater as an alternative treatment for both COD reduction and energy generation. Two scenarios were assessed: electricity and heat cogeneration (S1) and hydrogen production (S2). Process simulations in Aspen Plus (R) V14, based on lab-scale APR data, provided upscaled material and energy flows for techno-economic analysis, life cycle assessment, and energy sustainability analysis of a 2.5 m3/h plant. At 75% ethanol conversion, the minimum selling price (MSP) was USD0.80/kWh with a carbon footprint of 0.08 kg CO2-eq/kWh for S1 and USD7.00/kg with 2.57 kg CO2-eq/kg H2 for S2. Interestingly, S1 revealed a non-linear trade-off between APR performance and energy integration, with higher ethanol conversion leading to a higher electricity selling price because of the increased heat reactor duty. In both cases, the main contributors to global warming potential (GWP) were platinum extraction/recovery and residual COD treatment. Both scenarios achieved a positive energy balance, with an energy return on investment (EROI) of 1.57 for S1 and 2.71 for S2. This study demonstrates the potential of APR as a strategy for self-sufficient energy valorization and additional revenue generation in wine-producing regions.
Techno-Economic and Life Cycle Assessments of Aqueous Phase Reforming for the Energetic Valorization of Winery Wastewaters / Farnocchia, Giulia; Gómez-Camacho, Carlos E.; Pipitone, Giuseppe; Hischier, Roland; Pirone, Raffaele; Bensaid, Samir. - In: SUSTAINABILITY. - ISSN 2071-1050. - 17:17(2025). [10.3390/su17177856]
Techno-Economic and Life Cycle Assessments of Aqueous Phase Reforming for the Energetic Valorization of Winery Wastewaters
Farnocchia, Giulia;Pipitone, Giuseppe;Pirone, Raffaele;Bensaid, Samir
2025
Abstract
Globally, winery wastewaters (WWWs) are estimated to account for about 62.5 billion L annually (2021), with COD levels up to 300,000 mg O2/L primarily attributed to residual ethanol, posing serious environmental concerns. Conventional treatments are effective in COD removal, but they often miss opportunities for energy recovery and resource valorization. This study investigates the aqueous phase reforming (APR) of ethanol-rich wastewater as an alternative treatment for both COD reduction and energy generation. Two scenarios were assessed: electricity and heat cogeneration (S1) and hydrogen production (S2). Process simulations in Aspen Plus (R) V14, based on lab-scale APR data, provided upscaled material and energy flows for techno-economic analysis, life cycle assessment, and energy sustainability analysis of a 2.5 m3/h plant. At 75% ethanol conversion, the minimum selling price (MSP) was USD0.80/kWh with a carbon footprint of 0.08 kg CO2-eq/kWh for S1 and USD7.00/kg with 2.57 kg CO2-eq/kg H2 for S2. Interestingly, S1 revealed a non-linear trade-off between APR performance and energy integration, with higher ethanol conversion leading to a higher electricity selling price because of the increased heat reactor duty. In both cases, the main contributors to global warming potential (GWP) were platinum extraction/recovery and residual COD treatment. Both scenarios achieved a positive energy balance, with an energy return on investment (EROI) of 1.57 for S1 and 2.71 for S2. This study demonstrates the potential of APR as a strategy for self-sufficient energy valorization and additional revenue generation in wine-producing regions.| File | Dimensione | Formato | |
|---|---|---|---|
|
sustainability-17-07856.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
5.19 MB
Formato
Adobe PDF
|
5.19 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3004459
