Reservoirs play a crucial role in modifying natural flow regimes and mitigating flood peaks, yet their effectiveness depends heavily on operational strategies, particularly the initial storage level at the onset of a flood event. This study investigates, for the first time, the non-linear effects of reduced initial storage on the relationship between flood peak attenuation efficiency and flood return period for about 250 large dams in Italy. We estimate flood hydrographs via a simplified hydrological model and apply full hydraulic routing under different scenarios of initial reservoir storage, informed by historical reservoir time series and regional flood seasonality. Our findings reveal that flood peak attenuation is highly sensitive to the initial storage level, with dam performance deteriorating sharply as flood return periods increase, especially when initial storage is high. Seven distinct classes of dams are identified based on their flood attenuation capacity relative to flood severity, highlighting non-linear and threshold effects that are often overlooked in regional dam safety assessments. Notably, the commonly assumed full-reservoir condition yields overly conservative estimates: under this assumption, approximately 20% of the dams reach their maximum allowed water level for return periods of 100 years or less. This national-scale analysis provides new insights into regional differences in reservoir operation, particularly between hydropower-oriented dams in the Alps and water supply reservoirs in southern Italy. By explicitly quantifying how reduced initial storage can enhance flood mitigation, the study offers practical recommendations for optimizing reservoir operations under current and future climatic conditions.
Non‐Linear Influence of Reservoir Initial Condition on Flood Reduction / Evangelista, Giulia; Bertola, Miriam; Blöschl, Günter; Claps, Pierluigi. - In: JOURNAL OF FLOOD RISK MANAGEMENT. - ISSN 1753-318X. - 18:4(2025), pp. 1-16. [10.1111/jfr3.70142]
Non‐Linear Influence of Reservoir Initial Condition on Flood Reduction
Evangelista, Giulia;Bertola, Miriam;Claps, Pierluigi
2025
Abstract
Reservoirs play a crucial role in modifying natural flow regimes and mitigating flood peaks, yet their effectiveness depends heavily on operational strategies, particularly the initial storage level at the onset of a flood event. This study investigates, for the first time, the non-linear effects of reduced initial storage on the relationship between flood peak attenuation efficiency and flood return period for about 250 large dams in Italy. We estimate flood hydrographs via a simplified hydrological model and apply full hydraulic routing under different scenarios of initial reservoir storage, informed by historical reservoir time series and regional flood seasonality. Our findings reveal that flood peak attenuation is highly sensitive to the initial storage level, with dam performance deteriorating sharply as flood return periods increase, especially when initial storage is high. Seven distinct classes of dams are identified based on their flood attenuation capacity relative to flood severity, highlighting non-linear and threshold effects that are often overlooked in regional dam safety assessments. Notably, the commonly assumed full-reservoir condition yields overly conservative estimates: under this assumption, approximately 20% of the dams reach their maximum allowed water level for return periods of 100 years or less. This national-scale analysis provides new insights into regional differences in reservoir operation, particularly between hydropower-oriented dams in the Alps and water supply reservoirs in southern Italy. By explicitly quantifying how reduced initial storage can enhance flood mitigation, the study offers practical recommendations for optimizing reservoir operations under current and future climatic conditions.| File | Dimensione | Formato | |
|---|---|---|---|
|
J Flood Risk Management - 2025 - Evangelista - Non‐Linear Influence of Reservoir Initial Condition on Flood Reduction.pdf
accesso aperto
Tipologia:
2a Post-print versione editoriale / Version of Record
Licenza:
Creative commons
Dimensione
6.3 MB
Formato
Adobe PDF
|
6.3 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3004293
