The electrical properties of three-phase composite materials (CMs) graphite nanoplatelets/carbonyl iron/epoxy resin (GNP/Fe/epoxy) with 30 wt% of Fe and (1–5) wt% of GNP were studied by measuring DC conductivity and AC impedance spectra in the frequency range up to 2 MHz. The microwave shielding properties were measured in the frequency range of electromagnetic radiation (EMR) 1–67 GHz. The Nyquist diagrams derived from measured impedance–frequency spectra for GNP/Fe/epoxy CMs were considered within the equivalent circuit model. The significant increase of permittivity was observed for three-phase CMs with the increase of GNP content compared to two-phase GNP/epoxy CMs. For example, the real part of permittivity ε′ = 700–300 and imaginary part ε″ = 4 × 105–300 for ternary 5 GNP/Fe/epoxy composite in the frequency range 1 kHz–2 MHz. The observed significant increase of AC conductivity for three-phase composites proved the synergetic role of Fe particles in dispersing of GNP filler in epoxy matrix and formation of micro-capacitor network (for low GNP content) as well as the conductive network for higher GNP content. The observed sufficient increase of EMR shielding (SE T in dB) beginning from 30–35 GHz for GNP content of 3–5 wt% correlates with DC electrical conductivity increase. The increase of the sample thickness d leads to the increase of shielding efficiency mainly due to the increase of EMR absorption SE A term.
Dielectric and microwave shielding properties of three-phase composites graphite nanoplatelets/carbonyl iron/epoxy resin / Vovchenko, L. L.; Lozitsky, O. V.; Oliynyk, V. V.; Zagorodnii, V. V.; Len, T. A.; Matzui, L. Y.; Milovanov, Y. S.. - In: APPLIED NANOSCIENCE. - ISSN 2190-5509. - 10:12(2020), pp. 4781-4790. [10.1007/s13204-020-01326-w]
Dielectric and microwave shielding properties of three-phase composites graphite nanoplatelets/carbonyl iron/epoxy resin
Milovanov Y. S.
2020
Abstract
The electrical properties of three-phase composite materials (CMs) graphite nanoplatelets/carbonyl iron/epoxy resin (GNP/Fe/epoxy) with 30 wt% of Fe and (1–5) wt% of GNP were studied by measuring DC conductivity and AC impedance spectra in the frequency range up to 2 MHz. The microwave shielding properties were measured in the frequency range of electromagnetic radiation (EMR) 1–67 GHz. The Nyquist diagrams derived from measured impedance–frequency spectra for GNP/Fe/epoxy CMs were considered within the equivalent circuit model. The significant increase of permittivity was observed for three-phase CMs with the increase of GNP content compared to two-phase GNP/epoxy CMs. For example, the real part of permittivity ε′ = 700–300 and imaginary part ε″ = 4 × 105–300 for ternary 5 GNP/Fe/epoxy composite in the frequency range 1 kHz–2 MHz. The observed significant increase of AC conductivity for three-phase composites proved the synergetic role of Fe particles in dispersing of GNP filler in epoxy matrix and formation of micro-capacitor network (for low GNP content) as well as the conductive network for higher GNP content. The observed sufficient increase of EMR shielding (SE T in dB) beginning from 30–35 GHz for GNP content of 3–5 wt% correlates with DC electrical conductivity increase. The increase of the sample thickness d leads to the increase of shielding efficiency mainly due to the increase of EMR absorption SE A term.| File | Dimensione | Formato | |
|---|---|---|---|
| Dielectric and microwave shielding properties of three-phase composites graphite nanoplatelets_carbonyl iron_epoxy resin.pdf accesso riservato 
											Tipologia:
											2a Post-print versione editoriale / Version of Record
										 
											Licenza:
											
											
												Non Pubblico - Accesso privato/ristretto
												
												
												
											
										 
										Dimensione
										3.83 MB
									 
										Formato
										Adobe PDF
									 | 3.83 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11583/3004290
			
		
	
	
	
			      	