Reliable and fast communication between unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) is essential for effective coordination in agricultural settings, particularly when human involvement is part of the system. This study systematically compares two communication architectures representing centralized and decentralized communication frameworks: (a) MAVLink (decentralized) and (b) Farm Management Information System (FMIS) (centralized). Field experiments were conducted in both empty field and orchard environments, using a rotary UAV for worker detection and a UGV responding to intent signaled through color-coded hats. Across 120 trials, the system performance was assessed in terms of communication reliability, latency, energy consumption, and responsiveness. FMIS consistently demonstrated higher message delivery success rates (97% in both environments) than MAVLink (83% in the empty field and 70% in the orchard). However, it resulted in higher UGV resource usage. Conversely, MAVLink achieved reduced UGV power draw and lower latency, but it was more affected by obstructed settings and also resulted in increased UAV battery consumption. In conclusion, MAVLink is suitable for time-sensitive operations that require rapid feedback, while FMIS is better suited for tasks that demand reliable communication in complex agricultural environments. Consequently, the selection between MAVLink and FMIS should be guided by the specific mission goals and environmental conditions.

Experimental Comparative Analysis of Centralized vs. Decentralized Coordination of Aerial–Ground Robotic Teams for Agricultural Operations / Katikaridis, Dimitris; Benos, Lefteris; Busato, Patrizia; Kateris, Dimitrios; Papageorgiou, Elpiniki; Karras, George; Bochtis, Dionysis. - In: ROBOTICS. - ISSN 2218-6581. - 14:9(2025), pp. 1-24. [10.3390/robotics14090119]

Experimental Comparative Analysis of Centralized vs. Decentralized Coordination of Aerial–Ground Robotic Teams for Agricultural Operations

Busato, Patrizia;
2025

Abstract

Reliable and fast communication between unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) is essential for effective coordination in agricultural settings, particularly when human involvement is part of the system. This study systematically compares two communication architectures representing centralized and decentralized communication frameworks: (a) MAVLink (decentralized) and (b) Farm Management Information System (FMIS) (centralized). Field experiments were conducted in both empty field and orchard environments, using a rotary UAV for worker detection and a UGV responding to intent signaled through color-coded hats. Across 120 trials, the system performance was assessed in terms of communication reliability, latency, energy consumption, and responsiveness. FMIS consistently demonstrated higher message delivery success rates (97% in both environments) than MAVLink (83% in the empty field and 70% in the orchard). However, it resulted in higher UGV resource usage. Conversely, MAVLink achieved reduced UGV power draw and lower latency, but it was more affected by obstructed settings and also resulted in increased UAV battery consumption. In conclusion, MAVLink is suitable for time-sensitive operations that require rapid feedback, while FMIS is better suited for tasks that demand reliable communication in complex agricultural environments. Consequently, the selection between MAVLink and FMIS should be guided by the specific mission goals and environmental conditions.
2025
File in questo prodotto:
File Dimensione Formato  
Experimental Comparative Analysis of Centralized vs. Decentralized Coordination of Aerial–Ground Robotic Teams.pdf

accesso aperto

Tipologia: 2a Post-print versione editoriale / Version of Record
Licenza: Creative commons
Dimensione 4.13 MB
Formato Adobe PDF
4.13 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11583/3004233